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Abstract— The paper shows a procedure for evaluating the
symmetric ergodic capacity of nonlinearly modulated finite al-
phabet signals in MIMO random channel. We first investigate
informationally equivalent signal space representation for finite
alphabet signals. The signals are allowed to be multidimensional
per one antenna to reflect the modulation nonlinearity. The
informationally equivalent signal space representation allows
a factorization per one eigenmode (depending purely on one
marginal eigenvalue) in the capacity evaluation in MIMO chan-
nel. The evaluation complexity does not depend on the MIMO
dimensions. We consider two types of channel signals constraints.
(1) A constraint on the waveform only. (2) A constraint on the
waveform and memory (modeled as a Markov chain). The mean
symmetric capacity for the former one is derived. For the latter
one, we derive lower and upper bounds based on the entropy
rate approximation.

I. INTRODUCTION

A. Motivation

The MIMO (Multiple-Input Multiple-Output) communica-
tion channel provides excellent capacity potential. However
most of the research effort has been concentrated so far on
the investigation of linear modulation schemes. The nonlinear
ones remained somewhat at a marginal scope. Apparently this
is caused by much more involved treatment. On the other side,
the nonlinear modulations have number of attractive properties.
It is mainly the resistance of the constant envelope modulations
to the nonlinear distortion and more degrees of freedom for
choosing the modulations waveforms in higher number of
dimensions.

In this paper, we attack the mathematical difficulties asso-
ciated with the nonlinearity by allowing a finite multidimen-
sional alphabet channel symbols (waveforms). The finiteness
assumption does not affect the usability of the results since any
practically used scheme must use the finite alphabet anyway.

B. Goals

The goal of the paper is to evaluate the capacity of the
MIMO Rayleigh channel with uncorrelated coefficients con-
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strained on the input by the choice of particular nonlin-
ear digital modulation. This imposes the constraint on the
waveform class used, e.g. a constant envelope one. They are
generally multidimensional per one antenna (consequence of
nonlinearity) and are drawn from the finite set. Additionally we
assume a constraint on the modulation memory. The memory
controls the waveform choice in the symbol sequence. It can
be used e.g. to guarantee the continuity of the phase (CPM).
We want to demonstrate how (a) higher dimensionality of
nonlinear signals and (b) the presence of the memory affect
the capacity. The capacity evaluation should be factorisable
in such a way that allows numerically feasible procedure not
depending on the MIMO channel dimensions. No channel state
information is assumed at the transmitter.

C. Paper milestones

(1) We develop an equivalent signal space representation of a
nonlinear finite alphabet modulation that allows factorization of
the MIMO capacity evaluation per one eigenmode depending
purely on one marginalized eigenvalue. This reduces the
computational load when later evaluating the integrals in the
capacity. It is based on a simple to obtain unitary decomposi-
tion (in contrast to Gram-Schmidt or Laurent expansion).

(2) We evaluate symmetric capacity for IID (Independent
Identically Distributed) channel symbols—nonlinearly modu-
lated waveforms with Nh dimensions per one antenna.

(3) We extend the previous case for channel symbols mod-
eled as a Markov chain. The first order approximation of the
lower and upper bound is derived. It is based on the entropy
rates inequalities.

D. Distinguishing features of the paper in the context of the
related work

In the contrast to a huge number of papers dealing with
MIMO channel capacity for unconstrained linear modulation
(represented by [1], [2]), the attention put on nonlinear and
waveform and/or memory constrained modulation is much
lower. The paper [3] deals with continuous valued constant
envelope signals capacity in AWGN scalar channel. The pa-
per [4] also assumes scalar channel and heavily relies on
the Laurent decomposition of CPM modulation. The paper
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[5] focuses only on linear modulations in MIMO channel
and derives bounds that partially mask the dependence on
particular constellation. The paper [6] concentrates only on
linear modulations and partially extends the the results for
modulation with memory. It builds on the same ground as [5].
Both [6] and [5] require averaging over the complete MIMO
channel matrix which makes the evaluation rather difficult for
higher number of antennas. None of the references address the
problem of nonlinear (dimension per antenna >1) modulation
with arbitrary waveform and memory constraint in MIMO
channel. These problems are addressed in our paper. Moreover
we provide the mean capacity evaluation in factorized form
over one marginal eigenvalue allowing easy evaluation for high
number of antennas.

II. SYSTEM MODEL AND DEFINITIONS

A. System setup for capacity investigation

We investigate the information capacity of a composite
channel formed by a concatenated chain of nonlinear multiple
antenna modulator and MIMO linear channel with AWGN.
The nonlinear modulator is considered in two variants. (a)
Memoryless nonlinear modulator (Fig. 1). The discrete part of
the modulator is an identity mapping. This imposes a constraint
only on the class of waveforms used (e.g. the constant envelope
FSK type). (b) Nonlinear modulator with memory (Fig. 2).
This situation imposes a constraint on both, the waveforms and
the modulation memory. The additional constraint on memory
can be used e.g. for controlling the continuity of the phase of
constant envelope modulation (e.g. CPM type).

B. Modulator

1) Nonlinear modulator: A multiple antenna modulator
produces nonlinearly modulated transmitted signal. The com-
plex envelope signal on ith transmit antenna is

si(t) =
∑

n

h(qn,i, t − nTS) (1)

where TS is the symbol period, h(q, t) is generally nonlinear
modulation function (waveform), qn,i ∈ {q(m)}Mq

m=1 is a chan-
nel symbol and n is its sequence number. The channel symbol
depends on the modulator input data cn,i ∈ {c(m)}Mc

m=1 and
modulator state σn,i ∈ {σ(m)}Mσ

m=1 through time-invariant gen-
erally nonlinear function qn,i = qi(cn,i, σn,i). Mq,Mc,Mσ

are alphabet (per-transmitter) sizes for channel symbol, input
codeword, and modulator state respectively.

The function qi(cn,i, σn,i) forms a discrete part of the
modulator and the function h(q, t) forms an expansion part
(discrete input, continuous waveform output) of the modula-
tor. The set of all possible modulator expansion part output
waveforms is h(�, t) ∈ {h(m)(t)}Mq

m=1. The modulation func-
tions are assumed to be Nyquist ones. This means that the
modulation memory is entirely located in the discrete part of
the modulator—the expansion part does not introduce mem-
ory. Modulators (discrete and expansion parts) in individual
transmitter branches are independent and identical.

2) Modulator constraint—waveform only, IID channel sym-
bols: The constraint on the set of h(�, t) ∈ {h(m)(t)}Mq

m=1

available through the set of qn,i ∈ {q(m)}Mq

m=1 is the funda-
mental one that controls the class of used channel waveforms
(e.g. the constant envelope ones).

3) Modulator constraint—waveform and memory: The
mapping cn,i �→ qn,i puts an additional optional constraint
related to the memory of modulation. It is useful to impose
e.g. the continuity of the phase which could not be modeled
otherwise. Assuming (cn,i, σn,i) �→ qn,i being a one-to-one
mapping, the sequence {qn,i}n forms a stationary Markov
chain with the transition matrix Π with elements Π�,�′ =
Pr{q1,i = q(�′)|q0,i = q(�)}. The transition matrix can be
obtained from the state equation σn+1,i = σ(cn,i, σn,i) and
a priori distribution {Pm,i}m = {Pr{cn,i = c(m)}}Mc

m=1 of in-
put symbols cn,i as Pr{q1,i|q0,i} = Pr{c1,i, σ1,i|c0,i, σ0,i} =
Pr{c1,i}Pr{σ1,i|c0,i, σ0,i} for all transmit antenna indices i.

C. Channel

The channel is assumed to be frequency flat block-constant
fading (NT , NR) MIMO channel with AWGN (Additive White
Gaussian Noise). A received signal at kth receive antenna is

xk(t) =
NT∑
i=1

gkisi(t) + wk(t) (2)

where gki are channel coefficients and {wk(t)}NR

k=1 are IID
zero mean rotationally invariant complex white Gaussian noise
processes with power spectrum density Sw(f) = 2N0. Chan-
nel coefficients are zero mean IID complex Gaussian random
variables with unity variance E[|gki|2] = 1. We also form a
(NR × NT ) channel matrix [G]ki = gki.



III. INFORMATIONALLY EQUIVALENT SIGNAL SPACE

REPRESENTATION

A. Signal space

A continuous time domain system representation defined in
Sec. II is not suitable for the capacity evaluation. A signal
space (complex orthonormal (ON) basis) representation is
much easier to handle—the AWGN representation becomes
random vector with mutually uncorrelated components. This
would not happen, if the base was not orthogonal. The signal
space representation of the nonlinear modulated signal is
somewhat more difficult to get in comparison with a linear
modulation. In the case of linear modulation with Nyquist
modulation impulse, the signal space corresponding to one
channel symbol is one-dimensional (complex) and the mod-
ulation impulse can directly serve as an ON basis function.

Unlike the linear case, the continuous model of the nonlinear
modulation (1) does not give a direct hint how to obtain
the signal space representation. A dimension of the space
spanned by the modulation waveforms for one symbol per
one antenna Nh = dim(span({h(m)(t)}Mq

m=1)) is generally
Nh ≥ 1 and Nh ≤ Mq. It is important not to confuse the
channel symbol dimensionality Nh (per one antenna) caused
by the nonlinearity with the dimensionality given by multiple
transmit antennas NT . We can directly use the Gram-Schmidt
process to get the ON basis. For a limited class of functions
(binary CPM), the Laurent expansion is often used. However
this expansion does not provide complex ON basis and the
Gram-Schmidt process has to be applied anyway. Both these
approaches are rather cumbersome and unnecessary.

B. Informationally equivalent multidimensional alphabets

It can be shown [7], using simple Euclidean space dis-
tance arguments, subspace projection, and the definition of
the entropy, that arbitrary two finite multidimensional alpha-
bets A = {a(i)}M

i=1 ⊂ C
na and B = {b(i)}M

i=1 ⊂ C
nb

with the dimension of spanned subspaces dim(span(A)) =
dim(span(B)) ≤ min(na, nb) are mutually informationally
equivalent if they have the same Gram matrix (correlation
matrix) R = AHA = BHB where A = [a(1), . . . ,a(M)]
and B = [b(1), . . . ,b(M)]. Superscript (.)Hdenotes Hermitian
transposition. The equivalence means that they can be used
one instead the other providing the same mutual information in
the channel with additive noise. Such alphabets have identical
distances between member pairs ∀i, k : ‖a(i) − a(k)‖ =
‖b(i) − b(k)‖. Actual dimensions of vectors na and nb can
be arbitrary. Important is the equivalence of the dimension of
the spanned subspaces.

This general result helps us to easily generate informa-
tionally equivalent signal space representation of modulated
signals (L2 space alphabet {h(i)(t)}i) based on the Gram
matrix equivalence. We first compute the Gram matrix from
the continuous domain definition of the modulation functions.
Its elements are [Rh]i,k =

∫ ∞
−∞ h(i)(t)h(k)∗(t) dt, i, k ∈

{1, . . . , Mq}. The informationally equivalent signal space rep-
resentation of these functions organized column-wise into

(Nh×Mq) matrix is S = [s(1), . . . , s(Mq)]. The corresponding
Gram matrix is Rs = SHS and it must hold Rs = Rh. The
matrix Rh can be factorized using unitary decomposition

Rh = FKFH = FK1/2K1/2FH . (3)

F is (Mq ×Nh) matrix with orthonormal columns. For Nh <
Mq, we remove the columns corresponding to zero eigenvalues
from the unitary matrix. K is (Nh×Nh) diagonal matrix with
nonzero eigenvalues of Rh. Clearly, the informationally equiv-
alent signal space representation of the transmitted signals
(composed as columns into a matrix) is S = K1/2FH .

C. Signal space system model

From now on, we denote the equivalent signal space expan-
sion of the signal at ith transmit antenna at sequence number
n as sn,i ∈ {s(�)}Mq

�=1. Signal space expansion of the received
signal at kth antenna at sequence number n is

xn,k =
NT∑
i=1

gkisn,i + wn,k. (4)

Notice (as a consequence of assuming nonlinear modulation)
that each signal has dimensionality Nh given by the dimen-
sion of space spanned by the modulation function h(.). The
vector wn,k is the signal space expansion of the Gaussian
noise. It is rotationally invariant complex Gaussian random
vector with zero mean and covariance matrix Cw = 2N0I
and its PDF (probability density function) is pw(w) =
exp(−‖w‖2/(2N0))/(2πN0)Nh . Vectors wn,k,wn′,k are in-
dependent for n 	= n′.

The overall MIMO system model with multidimensional
channel symbols can be now easily written with the help of
stacked matrices as

x̃n = G̃s̃n + w̃n. (5)

x̃n = [xT
n,1, . . . ,x

T
n,NR

]T , s̃n = [sT
n,1, . . . , s

T
n,NT

]T , w̃n =
[wT

n,1, . . . ,w
T
n,NR

]T and G̃ = G⊗INh
. The symbol ⊗ denotes

the Kronecker matrix product.

IV. CAPACITY OF FINITE ALPHABET MULTIDIMENSIONAL

SIGNALS IN MIMO CHANNEL

A. Channel eigenmodes

Having the channel model in the matrix form (5), we can
easily decompose the channel into the eigenmodes

x̃n = ŨD̃ṼH s̃n + w̃n (6)

where G̃ = ŨD̃ṼH is a Singular Value Decomposition (SVD)
of the stacked channel matrix. One can easily verify that Ũ =
U⊗ INh

, D̃ = D⊗ INh
, Ṽ = V⊗ INh

where G = UDVH

is the SVD of channel matrix G. The (NR × NT ) matrix D
is diagonal and has the first NG nonzero diagonal elements
α1, . . . , αNG

where NG = rank(GGH) is the rank of the
channel. Values αi are square roots of the eigenvalues of
GGH , αi =

√
λi =

√
eigi(GGH). The covariance matrix

of the noise vector is Cw̃ = 2N0I.



It is a known fact ([8]) that the unitary (a true unitary,
i.e., the square matrix) transformation has unity Jacobian and
therefore it does not change the entropy of continuous-valued
random vector. Also, unitary transformation preserves zero
mean Gaussian distribution with a diagonal covariance matrix.
The channel eigenmodes become

x̃′
n = D̃s̃′n + w̃′

n (7)

where x̃′
n = ŨH x̃n, s̃′n = ṼH s̃n, w̃′

n = ŨHw̃n. The
dimensionality of each eigenmode is Nh.

B. Informationally equivalent channel

Unitary transformation applied on finite alphabet symbols
also preserves the mutual information and thus

I(s̃n; x̃n) = I(s̃′n; D̃s̃′n + w̃′
n) = I(s̃n; D̃s̃n + w̃n). (8)

However this is justified by the fact that the unitary transfor-
mation preserves Gram matrix and distances between symbols
and thus the conclusions of Sec. III-B apply. This contrasts
with the continuous-valued case where the justification relies
on the Jacobian.

We obtain the informationally equivalent channel model

ỹn = D̃s̃n + w̃n (9)

where s̃n (the same one as in (6)) is the equivalent signal
space representation (Sec. III-B) of the transmitted signal and
ỹn = [yT

n,1, . . . ,y
T
n,NR

]T is the new virtual channel output
with informationally equivalent properties as x̃n, I(s̃n; x̃n) =
I(s̃n; ỹn).

A replacement of s̃′n by s̃n in the eigenmodes is a nec-
essary step that later allows the evaluation of the capacity
in the random channel. Actual codewords are required for
that evaluation, unlike from the case of continuous-valued
input where only a stochastic properties of the input are
needed. If we had not replace s̃′n by s̃n, the presence of
random eigenvectors would have made the average capacity
evaluation more difficult. Multidimensional averaging over
both eigenvectors and eigenvalues would have been needed.
When we use (9) only averaging over eigenvalues is needed
which reduces the numerical computational load substantially.

C. Symmetric capacity

In this paper, our goal is the evaluation of the symmetric
capacity (denoted by C∗). It is defined as the mutual in-
formation between channel input and output (see Fig. 1,2)
with the uniform distribution of input symbol probabilities
Pm = Pm,i = Pr{cn,i = c(m)} = 1/Mc for all i. See [9] for a
numeric iterative procedure finding the true capacity achieving
distribution in a general case.

The true capacity (maximized over all input distributions)
is equivalent to the symmetric capacity if the capacity achiev-
ing distribution is uniform. It happens in many cases, but
unfortunately there is no general way of finding this. We
can formulate number of sufficient (however generally not
necessary) conditions for this situation. It can be shown [7]
(based on a similar arguments as in [10, sec. 7.1.2]) that one

of such special situations is the following case of symmetric
signal set. If the set of all possible signal differences with
suitable unitary transformation does not depend on k, i.e.,

∀k∃U : {U(s(m) − s(k))}m = {s(m) − s(1)}m (10)

then the the capacity achieving probability distribution is
uniform at the level of s symbols (assuming IID symbols).

In the following, we assume no channel state information
at the transmitter and the perfect one at the receiver.

D. Capacity factorization per one eigenmode

An important consequence of our ability to express the finite
alphabet channel with equivalent signal space representation
of the waveforms directly applied to eigenmodes (see Sec. IV-
B and (9)) is the possibility of the capacity factorization per
one eigenmode. The total capacity per one channel symbol is
a sum of capacities per one eigenmode. Assuming identical
modulators for each antenna, it gives

C∗MIMO(α) =
NG∑
i=1

C∗i(αi). (11)

The index i denoting the particular eigenmode/antenna is
dropped for the notation simplicity in the whole subsequent
treatment. The symmetric capacity per one eigenmode is
obtained from the mutual information expressed in terms of
the entropy

C∗(α) = I(sn;yn)|Pm= 1
Mc

= H[yn] −H[wn]|Pm= 1
Mc

(12)
where H[wn] = Nh log2(2πN0e). The capacity depends on
particular eigenvalue α.

E. Memoryless modulator—IID channel symbols

We first assume that the discrete part of the modulator is
memoryless, i.e., qn = cn, Mq = Mc and the nth equivalent
transmitted signal sn = s(cn) depends exclusively on nth
symbol cn. The entropy of received signal in one eigenmode
is H[yn] = −E[log2 pyn

(yn)] where

pyn
(yn) =

Mq∑
m=1

Pmpw(yn − αs(m)). (13)

The symmetric capacity is

C∗(α) = −E[log2

Mq∑
m=1

1
Mc

pw(yn − αs(m))] −H[wn]. (14)

F. Channel symbols as a Markov chain

Now we extend the previous results into the case when
the modulator discrete part has memory. The channel symbols
at one antenna (dropping the antenna index) depend on the
data and modulator state qn = q(cn, σn). The equivalent
transmitted signal is then a function of the channel symbols
sn = s(qn). The sequence {qn}n forms a stationary Markov
chain (see Sec. II). The mapping qn �→ sn for the individual
eigenmode is also assumed to be a one-to-one mapping. The



equivalent signal space representation of transmitted signal sn

also forms a Markov chain with the same transition matrix Π.
The output yn of the equivalent channel model forms a hidden
Markov chain.

The capacity evaluation in the case of the output sequence
with hidden Markov property is somewhat more involved.
Average mutual information per one symbol can be expressed
as function of entropy rates Ī(sn;yn) = H̄[yn] − H̄[wn].
As a consequence of being white, the noise entropy rate is
H̄[wn] = H[wn] = Nh log2(2πN0e). The entropy rate of the
channel output can be lower and upper bounded [11]

H̄[yn] ≥ H[yn|yn−1, . . . ,y1,y0, s0], (15)

H̄[yn] ≤ H[yn|yn−1, . . . ,y1,y0]. (16)

The bounds approach the H̄[yn] as n increases. However,
the required dimensionality of integration when evaluating
the conditional entropy also increases making this rather
mathematically intractable. Therefore we use a first order
approximation

H[y1|y0, s0] ≤ H̄[yn] ≤ H[y1|y0]. (17)

Skipping details, we can get for these bounds H[y1|y0] =
H[y1] and

H[y1|y0, s0] = −
∫ ∞

−∞

Mq∑
m=1

Pm

Mq∑
k=1

Πm,kpw(y1 − αs(k))

× log2

Mq∑
j=1

Πm,jpw(y1 − αs(j)) dy1. (18)

It is easy to see that the symmetric capacity Markov
model upper bound (first order approximation) CMUB

∗ (α) is
equivalent to the memoryless case CMUB

∗ (α) = C∗(α) treated
in the previous section. Unfortunately, this makes the bound
rather loose since it completely ignores the memory. There
is also, another trivial finite alphabet upper bound CTUB

∗ =
log2 Mc which holds generally for arbitrary (e.g., no envelope
constraint) finite alphabet modulation. A combination of these
two can be used to narrow the gap

C∗(α) ≤ CUB
∗ (α) = min

(
CTUB

∗ , CMUB
∗ (α)

)
. (19)

The symmetric capacity lower bound of one eigenmode is

CMLB
∗ (α) = H[y1|y0, s0] − Nh log2(2πN0e)|Pm= 1

Mc

. (20)

G. Mean capacity for random channel

For random IID Rayleigh channel, the channel eigenvalues
obey Wishart distribution [2]. But unlike from the continuous-
valued channel input, the eigenmode capacity is expressed in
terms of αi =

√
λi. The total average ergodic symmetric

capacity for IID symbols (and similarly upper/lower bounds
for the Markov case) is got by the averaging

C̄∗MIMO = NG Eα[C∗(α)] (21)

where NG = min(NT , NR). The averaging Eα is done with
respect to the one eigenmode marginal distribution from the

unordered joint one. Clearly, the PDF is pα(α) = 2αpλ(α2)
where

pλ(λ) =
1
a

a−1∑
k=0

k!
(k + b − a)!

(Lb−a
k (λ))2λb−ae−λ. (22)

The function La
k(�) is Laguerre polynomial, a =

min(NT , NR), b = max(NT , NR). Since we used (9),
no random eigenvectors were needed.

V. EXAMPLE NUMERICAL RESULTS

The symmetric capacity behavior of the waveform and op-
tionally memory constrained nonlinear modulation in MIMO
channel is now demonstrated on examples. The linear mod-
ulation serves as a reference allowing to demonstrate the
influence of higher dimensionality of nonlinear modulation.
We chose constant symbol energy schemes. Examples share a
common (2, 2) Rayleigh MIMO channel with rank NG = 2.
The mean received symbol energy to noise PSD ratio per one
receiver is γ = E[‖s̃‖2]/(2N0). We show also a result with
no input alphabet constrain [12] with the same dimensionality
Nh for a comparison. Integrations in the capacity expressions
were evaluated by Monte Carlo method over the marginal
eigenvalue. See Fig. 3 and 4 for the mean capacity results.

MSK: MSK is a nonlinear modulation with memory that
guarantees the phase continuity. The input data symbols
are binary Mc = 2 and the modulation waveforms are
{h(i)(t)}Mq

i=1 = {exp(j π
2 (σ(m) + c(�) t

TS
))v(t)}m,� where

v(t) = (U(t) − U(t − TS))/
√

TS , and U(�) is a unit step
function. The state and input symbol alphabets are σ(m) ∈
{0, 1, 2, 3}, c(�) ∈ {±1}. There is Mq = 8 distinct waveforms.
The state equation is σn+1 = (σn+cn) mod 4. The equivalent
signal space representation is

S =

 −a aj −aj −a a −aj aj a

−b −bj −bj b b bj bj −b


 (23)

where a ∼= 0.905, b ∼= 0.426. The dimension of the space
spanned by the modulation waveforms is Nh = 2 per one
antenna. This is a direct consequence of MSK nonlinearity.
The modulator transition matrix is

Π =
1
2




0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0




. (24)

MSK class waveforms, IID symbols: This example uses the
set of MSK waveforms but no memory in the discrete part of
the modulator is present. The waveform is directly controlled
by the input data symbols qn = cn. This also means that both
alphabets have Mc = Mq = 8. Removing the constraint on
the memory of the previous MSK case (the memory was the
price we paid for controlling the continuity of the MSK phase)
increased the size of input data alphabet from 2 to 8.
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Fig. 3. MSK waveforms (Nh = 2) in (2, 2) Rayleigh MIMO channel.
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Fig. 4. 8PSK waveforms (Nh = 1) in (2, 2) Rayleigh MIMO channel.

8PSK, IID symbols: The 8PSK modulation is a linear one
serving as a reference case with the same waveform set size
Mq = 8 and symbol energy as for MSK case but with the
dimensionality Nh = 1. The informationally equivalent signal
space representation is S = [s(1), . . . , s(Mq)] where s(i) =
exp(j2π(i − 1)/Mq) is a 1-dimensional vector.

8PSK with trellis code: The 8PSK waveform “π-mapper”
(π phase shift for symbol pairs 1-2,3-4,5-6,7-8) is preceded by
a binary to 8-ary trellis coder with the same transition matrix
as in the MSK in order to investigate the influence of the
dimension Nh.

Binary IID modulation: Both MSK and 8PSK with trellis
code have Mc = 2. We included also the binary IID constella-
tion using the best waveform pair with given symbol energy for
a comparison. Such constellation is given uniquely (antipodal
signals) and has dimension Nh = 1.

VI. DISCUSSION OF THE RESULTS AND CONCLUSIONS

Factorization of the MIMO capacity averaging: The factor-
ization, enabled by the equivalent signal space representation,
in fact transfers the MIMO Rayleigh problem into the marginal
root-Wishart scalar one (compare with [6], [5]).

Influence of the memory: Comparing the results with the
best binary IID case, we observe that the capacity degradation

caused by the presence of the modulation memory in MSK
case (the price we pay for a phase continuity of MSK) is
relatively very small. The alphabet finiteness is dominant.

Influence of the waveform class and dimension Nh: The
IID results for MSK (Nh = 2) versus 8PSK (Nh = 1) nicely
demonstrate how increased waveform dimension (for given
Mq = 8) helps to provide better constellations.

Low signal to noise ratio: Based on the numerical results,
we see that the gap between unconstrained and finite IID
alphabet symmetric capacity decreases with increasing per
antenna dimension Nh. The information is spread over a
larger number of parallel channels (dimensions) which are less
affected by the finiteness of the alphabet compared to case of
Nh = 1. This favors the nonlinear modulations (Nh > 1)
over the linear ones (Nh = 1) especially for low alphabet
size. However, these comparisons can never be completely fair
since the Nh = 1 case provide much lower freedom for the
constellation choice given the mean symbol energy. We cannot
preserve distances in the constellations when comparing the
case with Nh > 1 and Nh = 1 and thus we cannot clearly
separate the dependence on Nh.

High signal to noise ratio: In this case, the finite alphabet
multidimensional (Nh > 1) waveforms cannot fully exploit the
higher potential of the multidimensional unconstrained channel
and the finiteness limitation becomes dominant.

Approximation order: The precision of the upper and lower
bound approximation for a Markov symbols case can be
improved by increasing the order of the conditional entropy
paid by increased dimensionality in the integrals evaluation.
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