
POSTER 2017, PRAGUE MAY 23 1

Reinforcement Learning for Humanoid Robot Control

Marek Danel1

1Faculty of Information Technology
Czech Technical University

Thákurova 9, 160 00 Praha, Czech Republic

danelmar@fit.cvut.cz

Abstract. In this paper, we describe results of applica-
tion of reinforcement learning on full body control of a hu-
manoid robot. We start with a simple task of achieving ver-
tical position of robot’s torso. We use an actor-critic neural
network architecture, which is well established approach for
reinforcement learning continuous action policies. Our ex-
perimental setup includes an instance of the NAO robot in
the Webots simulation environment and custom adaptation
components for Keras-rl reinforcement learning framework.
We present minor modifications of original algorithm and
discuss several encountered challenges of applying deep re-
inforcement learning methods to humanoid robot control.

Keywords
Reinforcement learning, NAO, humanoid robot, actor-
critic, DDPG, neural networks

1. Introduction
Nowadays, there are humanoid robot bodies available

with high degree of movement freedom. They are also
equipped with sensors, which provide large amount of in-
put from robot’s environment in multiple modes as well as
input from robot’s own body. This immense amount of in-
put data and freedom of actions poses a challenge of fully
exploiting robot’s potential.

In real-world environment, any movement is subject to
unpredictable deviations. When performing fixed sequences
of movements, a robot will end up in a very different final
position every time due to cumulating inaccuracies of every
step in the sequence. Therefore, many subtle and significant
changes to originally planned sequence need to be made con-
tinuously to compensate for stochasticity of the real-world
environment. A feasible control policy needs to translate
sensory readings to appropriate action in every time step.

Complexity of such a policy makes it very time con-
suming to engineer. Thus, machine learning algorithms are
suitable tools for this task. Finally, it is impossible to pre-
dict all situations a truly autonomous robot can encounter in
real-world. Therefore, ability to learn and improve policy is
necessary feature of the solution we look for.

We decided to build upon recent advancements of rein-
forcement learning. In this paper, we describe our results of
application of Deep Deterministic Policy Gradient (DDPG)
method [1] on a full humanoid body control task. We present
several challenges of reinforcement learning (RL) applica-
tion encountered and discuss possible solutions. The goal is
to reach vertical position of robot’s torso. The specific de-
vice we use in our experiments is robot NAO. We also show
some minor improvements over baseline Keras-rl [2] imple-
mentation that promote learning stability in our task.

2. Background
In the field of reinforcement learning, we model agent

in its environment as a Markov Decision Process (MDP).
MDP consists of state space S, action space A, transition
dynamics given by probability density P (st+1|st, at) and a
reward function R(s, a). By small letters s and a we denote
state and action respectively and subscript them with t and
t+1 whenever the distinction between subsequent time steps
is necessary. In every time step, agent observes the state of
the MDP, picks an action according to its policy π and re-
ceives a reward determined by the reward function. The pol-
icy π is defined as probability of taking an action given the
state agent has observed π = P (a|s). Alternatively, policy
can be constrained to a deterministic form. Then, it is sim-
ply a function of state that returns action to be performed
at = π(st). In our work, we use only the deterministic form
of a policy.

We assume full observability of the environment. Un-
der this assumption, the state and its observation are equal.
They are often used interchangeably and in the rest of the
paper we use both these terms.

The DDPG algorithm we apply to humanoid robot con-
trol is a model free approach that learns a policy by function
approximation. The function approximation is used to eval-
uate utility (or value) of actions in given state expressed as
a single real value. This evaluation function is called action
value function and it is always denoted by Q(s, a). When
the utility of actions is known, it is possible to pick the most
useful one. Another commonly used term is a state value
function V (s), which evaluates utility of a state. The re-

2 Marek Danel

lationship between the action value function and the state
value function is:

V (s) = maxaQ(s, a) (1)

2.1. Actor-critic agent and how it learns
The DDPG algorithm utilizes an actor-critic neural net-

work architecture. The actor network implements the de-
terministic policy. The critic approximates the action value
function Q(s, a) and the actor network is trained to maxi-
mize the value of actions it outputs with respect to the action
value function the critic approximates. The mathematical
formulation of the actor is therefore argmaxaQ(s, a).

The critic network is trained to minimize a mean
squared temporal difference error. Temporal Difference
(TD) learning is an approach for learning an action value es-
timation that considers long-term payoff. An action is valu-
able for the immediate reward received upon taking it and
also for all the rewards received in future for which taking
that specific action was critical. The TD value of an action
is defined as exponentially weighted sum of future rewards:

Q(st, at) =

∞∑
i=t

γirt+i (2)

where γ ∈ (0, 1) is a discount factor that controls preference
of close or distant outcomes. The action value of this form
can be interpreted as an expected discounted cumulative re-
ward or as an expected discounted return.

An optimal policy picks the most valuable action in
each state. For such a policy, the Bellman Equation holds:

Q(st, at) = rt + γQ(st+1, at+1) (3)

We take this relationship as an objective function for training
critic network. The approximation error Yt in a time step t
can be obtained by a simple modification:

Yt = Q(st, at)− (rt + γQ(st+1, at+1)) (4)

Since calculation of the error includes the approxi-
mated function Q(s, a) itself, the training bootstraps from
Q(s, a) = 0 or a random distribution of values close to zero.

3. Related Work
The most relevant work is the DDPG [1] algorithm by

DeepMind, which we apply to a new task. It is a combi-
nation of actor-critic network architecture with replay buffer
and target network techniques taken over from the previous
success of Deep Q-Network (DQN) approach [3]. In other
words, it is an extension of DQN to continuous action do-
main.

A very close alternative to DDPG is the approach called
Normalized Advantage Functions (NAF) [4]. It is another

extension of DQN to continuous action tasks, but it works
in a different way. In every state DQN outputs value per ac-
tion. However, in continuous action space possible actions
are uncountable, so output must take form of a function. This
is roughly what NAF does. NAF decomposes action-value
function Q(s, a) to a sum of state value V (s) and advantage
function A(s, a). The advantage function further decom-
poses to aL(s)L(s)a where L is a lower-triangular matrix
obtained as output from the Q-Network. Both algorithms
have been applied to robotic arms with 7 degrees of freedom
both in simulation and on real devices by Gu et al. [5]. The
attempted tasks were door opening and pick & place. Ex-
periments show successful learning of both algorithms with
NAF yielding slightly better results, both in simulation and
real devices. However, collection of sufficient experience for
learning in the real-world is very time consuming.

To speed up collection of experience in the real-world
environment, authors set up several devices to attempt the
same task at once. Every device acts in its own copy of the
environment. This approach to dealing with experience col-
lection bottleneck has worked well also for Levine et al. [6]
for the object grasping task. For our simulated NAO environ-
ment, this method is also relevant, as the simulation speed is
fixed to real-time.

4. Approach
4.1. Experimental setup

Our experimental setup consists of the Webots simula-
tor [7] hosting a single NAO robot instance. We start with
Keras-rl implementation [2] of the DDPG algorithm [1]. To
integrate the robot simulation with learning backend frame-
work we define custom environment class compatible with
OpenAI Gym [8] environment’s interface. A block diagram
of the architecture and data flow is presented on figure 1.

Observation of the environment includes:

• 25 joint angles that are to be reached and maintained by
servomotors.

• 25 actual measured joint angles

• 3 real values of gyroscope

• 3 real values of accelerometer

• 8 feet force sensors readings

Some more sensory data are supported but are not available
in the Webots simulator (e.g. joint absolute current values).
Image from two cameras is also available, but we do not use
this input yet.

The action vector a ∈ (−1, 1)25 is meant to define
the percentage of maximum torque to be applied to rotating
each of 25 joints in positive or negative direction. However,
NAO’s API does not allow to manipulate the current let to
its servomotors directly. There is a feedback control mech-
anism built-in that regulates the current let into servomotors
so that they maintain a specified position of the joint. Our

POSTER 2017, PRAGUE MAY 23 3

Fig. 1: Block diagram of experimental setup. Boxes denote software components, ellipses denote data.

policy can control the angles maintained and also a param-
eter of every joint called stiffness. Stiffness is a value in
range [0, 1] and its meaning is a portion of maximum current
allowed to be used by thefeedback control for maintaining
join’s desired position.

To simulate direct control of the torque in the joints,
we set the stiffness of an i-th joint to |ai| and set a new angle
to be reached and maintained by the built-in feedback con-
troller. We determine a change in the maintained angle ∆αi

by following relationship:

∆αi = ωmax,i ∗ ai ∗∆t (5)

Where the ωmax,i is the maximum rotation velocity of the i-
th joint (with full torque) and ∆t is a duration of the action.
This way we make sure that joint is moving during the whole
interval ∆t and reaches its destination angle right at the end
of the action time frame.

4.2. Task
The goal is to achieve a vertical posture of robot’s torso.

We measure how much a posture is vertical by readings from
accelerometer located in torso. In a vertical posture the ac-
celeration on Z axis of the accelerometer is approximately
-9.8 ms−2 which equals gravitational acceleration of the
earth. The reward function r(st, st+1) is defined for every
transition from state st to state st+1 as the difference of the
vertical acceleration (See equation 6). We denote an accel-
eration measured on axis Z in state st as AccelZ(st).

r(st, st+1) = −(AccelZ(st+1)−AccelZ(st)) (6)

A reward function like this makes the get up task particu-
larly suitable for testing reinforcement learning algorithms,
since non-zero rewards are available for nearly all transi-
tions. This makes this task significantly easier compared to
tasks with sparse rewards, where non-zero rewards are many

steps away from each other. Temporal difference learn-
ing then requires more iterations to propagate action-values
through distant states.

Although the chosen task is in many aspects well suited
for early experiments, it is still quite difficult. The goal
state is distant and the sequence of correct actions needed
to achieve it is long. The robot needs to support its weight
by his limbs through major part of the movement. This in-
troduces problem of choosing reasonable balance between
exploration and exploitation. An agent can learn effects of
actions not yet examined by taking random actions. On the
other hand, it can make progress in reaching the goal by fol-
lowing the learned deterministic policy.

4.3. Exploration
We use ε-greedy exploration policy with dynamically

managed ε parameter. In every time step, ε-greedy agent
performs random action with probability ε and follows
learned policy with probability 1 − ε. We propose to set
probability by following formula:

ε =
1

max(1, V (s))
(7)

The idea behind this formula is that when predicted dis-
counted reward gain is high, then it pays off to follow the
learned policy. The agent will either complete the task or
make partial progress and proceeds with exploration when
the predicted future reward gain decreases. There is a pos-
sibility that following the learned policy does not yield the
expected cumulative reward. This can happen when the gen-
eralization is incorrect due to insufficient sampling of state
and action space. Then, following the learned policy is still
beneficial as an exploration mechanism.

In the equation 7 we have shown how we compute the
random action probability ε for a state evaluated by V (s) for
simplicity. However, with an actor-critic agent the explicit

4 Marek Danel

Fig. 2: Figure shows metrics of a learning process.
The first plot shows how vertical position robot was in
at every time step of training (cumulative reward). It
also shows the predicted outcome of learned policy (ex-
pected result). The second plot shows the current explo-
ration rate. Third plot shows absolute error of training
critic. The last two plots show training metrics of the
actor and critic networks.

implementation of the value function V (s) is not available.
The available functions of state are action-value function
Q(s, a), which is approximated by critic network, and the
policy function argmaxaQ(s, a) implemented by actor net-
work. By composing these two terms we can get an equiva-
lent formula that is ready to be implemented.

ε = 1/max(1, Q(s, argmaxaQ(s, a))) (8)

5. Results
Figure 2 shows metrics of one learning process. As we

can see on the first plot, the learned policy manages to main-
tain score slightly above zero. The goal of vertical position
was not achieved yet. In following paragraphs, we discuss
issues discovered in learning record and suggest possible so-
lutions.

The record of initial learning attempt on Figure 2 shows
unsatisfactory learning schedule. As the number of collected
experience grows, the critic network clearly does not con-
verge. A quick fix could be rising the fixed number of learn-
ing iterations. However, rising this number too much could
result in excess iterations and waste of time when learning on
new evidence converges quickly. Choosing an optimal value
would take multiple attempts and the chosen value would be
suitable for only one specific task. More sophisticated and
reliable approach is to stop training when the approxima-
tion error stops improving. This can be done by watching
sliding mean and variance of the first derivative of learning
curve. Learning can be stopped when mean tangent of learn-
ing curve is higher than given threshold and when change of

Fig. 3: Overestimation of impossible action seriously
restricts exploration.

variance in two subsequent sliding windows is below given
threshold.

5.1. Overestimation
Another issue apparent on Figure 2 is overestimation

of the expected cumulative reward. This can be seen well on
first plot. For example, on 3000-th step you can see predicted
outcome of 25, which is even impossible to achieve while
gravitational acceleration of earth is about 9.8.

Overestimation is usually credited to inaccuracy of ap-
proximation function and it is hurting policy performance
[9]. This phenomenon occurs consistently even with much
more fine trained networks then on Figure 2. In certain learn-
ing configurations, the overestimation even amplifies by the
critic-actor training loop. Error then grows to infinity and
learning process fails.

Another shortcoming brought by overestimation is get-
ting stuck in position constrained by joint’s angle limita-
tions. Figure 3 shows example of learning process that has
converged to policy that overestimates an impossible move.
Usual way to deal with constraints in motion through state
space in reinforcement learning is restarting often to the
initial position and performing many rather short episodes.
However, natural learning of humans and animals happens
without any restarts. Therefore, we see exploring alternative
approaches as a suitable course of research.

Overestimation is a common issue of Q-learning algo-
rithms in general. Hasselt et al. [10] have proposed solution
called Double Q-learning, which was also applied for Deep
Q-network algorithm [9]. Double Q-learning decouples ac-
tion evaluation from selection during learning by using sep-
arate parameter sets θ and θ′ for both tasks.

Yt = rt+1 + γQ(st+1, argmaxaQ(st+1, a; θ); θ′) (9)

POSTER 2017, PRAGUE MAY 23 5

Fig. 4: Learning process metrics of the same agent with
larger networks.

This variation of Bellman equation describes reference value
Yt for training a Q-network. The adaptation for actor-critic
network may be very straightforward, since actor network
actually approximates the argmaxaQ(st+1, a) portion of
formula. However, this approach needs to be experimentally
evaluated.

Much quicker way to reduce overestimations is learn-
ing with larger networks. Figure 4 shows learning metrics
with network size increased to 4 layers of 200 neurons using
tanh activations instead of relu. This learning episode also
starts from pre-collected experience of roughly 4500 steps.
We can see convergence to much less residual error of critic
network and significantly lower overestimations. Although,
they did not disappear completely yet. Nevertheless, new
learned policy was able to achieve maximum cumulative re-
ward of about 6, which is a significant improvement.

The frequent oscillations in random action probability
(ε) are a good sign, as they correspond well with expected
gain for following learned policy. The robot follows the
learned policy and reaches a more vertical position. At the
boundary of sampled state space the predicted reward gain
gets low. Then, the robot takes random action, usually falls
and the scenario repeats.

6. Conclusion
We have built an experimental setup for deploying deep

reinforcement learning algorithms on humanoid robot in
real-world simulation environment. We have conducted sev-
eral experiments and addressed encountered challenges of
applying reinforcement learning to a new task. Our results
indicate, that successful learning of humanoid body control
requires more experience collected together with either care-
fully picked network size, or an implementation of Double
Q-learning.

Acknowledgment
I thank Miroslav Skrbek for supervision of this

work. This research has been supported by CTU grant
SGS17/213/OHK3/3T/18.

References
[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,

Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” CoRR, vol. abs/1509.02971, 2015. [Online].
Available: http://arxiv.org/abs/1509.02971

[2] M. Plappert, “keras-rl,” https://github.com/matthiasplappert/keras-rl,
2016.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 02 2015. [Online]. Available:
http://dx.doi.org/10.1038/nature14236

[4] S. Gu, T. P. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” CoRR, vol. abs/1603.00748,
2016. [Online]. Available: http://arxiv.org/abs/1603.00748

[5] S. Gu, E. Holly, T. P. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation,” CoRR, vol. abs/1610.00633, 2016.
[Online]. Available: http://arxiv.org/abs/1610.00633

[6] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning
and large-scale data collection,” CoRR, vol. abs/1603.02199, 2016.
[Online]. Available: http://arxiv.org/abs/1603.02199

[7] Webots, “http://www.cyberbotics.com,” commercial Mobile Robot
Simulation Software. [Online]. Available: http://www.cyberbotics.
com

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016. [Online]. Available: http://arxiv.org/abs/1606.01540

[9] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” CoRR, vol. abs/1509.06461, 2015. [Online].
Available: http://arxiv.org/abs/1509.06461

[10] H. V. Hasselt, “Double q-learning,” in Advances in Neural
Information Processing Systems 23, J. D. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds.
Curran Associates, Inc., 2010, pp. 2613–2621. [Online]. Available:
http://papers.nips.cc/paper/3964-double-q-learning.pdf

About Authors. . .

Marek DANEL
Finished bachelor degree in 2014 and
master degree in software engineer-
ing in 2016, both at FIT, CTU in
Prague. In 2016 he started his doc-
toral study on behavior modeling for
robotics and started working in IBM
Watson R&D Prague the same year.

DANEL Marek.: Dialogový systm využı́vajı́cı́ znalostnı́
báze. Master’s thesis, Czech Technical University, Faculty
of Information Technology, 2016.

http://arxiv.org/abs/1509.02971
https://github.com/matthiasplappert/keras-rl
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1603.00748
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1603.02199
http://www.cyberbotics.com
http://www.cyberbotics.com
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1509.06461
http://papers.nips.cc/paper/3964-double-q-learning.pdf

