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ABSTRACT

A novel optimal two stage coding for finite set of parallel flat-fading MIMO channels with single common information
source with specific constant rate requirement is derived. The optimality of suggested coding is achieved in terms of the
capacity versus outage performance. The well-known optimal coding rule relies on Gaussian codewords spanned over
the whole available finite set of parallel channels. We prove that the equivalent preprocessing to the ideal interleaving is
to re-code independent parallel channels codewords by a linear inner precoder from a special class of unitary precoders
complying with the optimality criterion derived in the paper. Performing such linear mixture of codewords sharing common
Gaussian block-wise codebook, the same capacity versus the outage is guaranteed without any interleaving over parallel
channels. We utilize a virtual multiple access (VMA) channel approach to derive the optimality criterion. Selected precoders
with various space-time or time-only domain span were tested against this criterion and we provide the optimality results
on variety of the channel parameters. We showed that the temporal processing is the most important one to achieve the
optimality of the precoder. A full space-time precoding does not perform better than one which is temporal-only. Copyright
© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Background

A communication system with a finite number of
parallel flat-fading multiple-input multiple-output (MIMO)
channels is used as the underlying application model for
this paper. It might particularly arrive as the delay limited
scenario where M time or frequency separated blocks
are observed. We assume no channel state information
at the transmitter (cf. [1] for an adaptive technique with
the channel state information available at the transmitter).
Since there is a finite number of channel realizations
(understood as parallel channels with shared transmitter,
receiver, and information source), the channel observation
must be treated as the non-ergodic one, i.e. informationally
unstable [2]. We cannot use any more the tools of classical
(ergodic) Shannon capacity approach. The performance
metric is the capacity versus outage. This is the latency

limited performance metric. The instantaneous capacity [2]
depends on given realizations and it is indeed the random
value itself.

A very good explanation of the optimal coding approach
to the channel accommodating finite number of realizations
is given in Reference [2]. In Reference [3], a very useful
and general analogy with compound channel is used in the
derivation of a delay limited outage capacity, average and
ergodic (Shannon) capacity. The optimal coding relies on
long codewords spread over all parallel channel realizations.
Such a coding can be understood as an ideal interleaving of
symbols from Gaussian codebooks.

Channel precoding is a widely covered topic in recent
research. It is investigated in a variety of flavours in
terms of the system assumptions and optimization goals.
Some authors assume an availability of the channel state
information on the transmitter side (unlike this paper).
An overview of the precoding strategies under various
channel state information availability (perfect, statistical,
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limited statistical) is treated in Reference [4]. Very
recent generalized results based on Tomlinson-Harashima
precoding in a multi-user setup are presented in Reference
[5]. A number of specific problems arises in the
situation of a multi-user system with a limited/none
precoding cooperation [6]. Another common widely
addressed assumption refers to the optimization goal.
Authors frequently assume the ergodic (average) utility
function (unlike this paper). This average utility function
can have various forms, e.g. ergodic capacity, ergodic
diversity, bit error rate, and can be exploited under
various symbol alphabet and receiver structure constraints.
See References [7--9], and some very recent results in
Reference [10].

A particular case of no channel state information at
the transmitter combined with a non-ergodic delay limited
optimization goal appears to be neglected by authors. We
use the term diversity precoding with the interpretation
slightly different from the traditional understanding (e.g.
Reference [11]). Our term diversity refers to the system
where the information bits are intentionally spread over
parallel channels in order to decrease an impact of
their individual fading states to the overall performance
measured in terms of the capacity outage. This is exactly
what is done by the linear precoder investigated in this
paper.

1.2. Motivation and goals of the paper

Let us assume M parallel independent communication
channels, each being equipped with multiple receive and
transmit antennas—MIMO channel. The finite set of M
channels is called a frame. The channels can be separated by
an arbitrary physical principle. Typically, it is a separation
in time or frequency domain (time or frequency slots).
There are numerous application services (e.g. the streaming
data applications) where a drop (an outage) of a single
data block disqualifies the whole frame. The probability
of the frame outage is given by the probability of the worst
channel realization not supporting the rate R required by the
service

Pr {frame outage} = Pr

{
M⋃

m=1

C(m) < R

}
(1)

where C(m) is the instantaneous capacity in mth channel.
Our goal is to design an inner precoding scheme

equalizing the channel capacities in order to minimize the
frame outage probability. We want to equalize the channel
instantaneous capacities, i.e. to decrease their dispersion, as
they are visible to the outer code. This should be compared
with Reference [2] where the “average” behaviour is the
investigated utility function. This will lead to lower frame
outage probability. See Figure 1.

We have generally several options to solve the problem.
The first one is the one-stage optimal Gaussian code

this channel disqualifies whole frame

finite number of parallel channels

C(m)

equalized capacity—after precoding

instantaneous capacity—no precoding
average capacity for optimal coder

required rate R

m

∆ → 0

capacity under symmetry condition with only outer codes

Figure 1. Design goal: instantaneous capacity equalization.

with codewords spanning the whole frame. The code can
inherently equalize the influence of the individual channel
states by properly spreading the information over the
whole frame. However, the complexity of the encoding and
decoding would be high due to the codeword spanning the
whole frame.

In this paper, we follow the other option of the code
design. It uses an outer code with a common codebook
with the codewords having the length of one channel
(block). The codebook is shared by all channels and the
coding/decoding complexity is given only by the single
block (channel) length. The outer code is complemented by
a low complexity linear inner precoder performing mixing
of the channel states inside the frame and thus equalizing
the channel capacities visible to the outer code. Our target
is an investigation of the design rules for the inner precoder
that would equalize the capacities within the frame as much
as possible.

The measure of the performance is the frame outage
probability. The number of the channels is assumed
to be finite and thus the ergodic capacity cannot be
used. We compare our two-stage approach with the one-
stage one. We use a virtual capacity region [12] as
the information theoretic investigation tool to obtain the
results.

The paper derives and formulates the optimality
criterion. The criterion can be used to check whether the
given precoder is optimal or not. Unfortunately it cannot
give direct hints for the precoder synthesis. However,
considering that the system does not use any channel state
information at the transmitter, this fact affects only the
precoder design and not the run-time operation. Despite of
the lack of the synthesis design rules, we provide the results
with qualitative interpretations that can help to minimize
the set of the precoders tested against the criterion. (1)
We numerically prove the existence of such a precoder
(for selected system parameters and arbitrary dimensions of
requested precoder). (2) We show that the temporal domain
precoding is the essential one (compared to the spatial-
temporal one) for selected systems. This is caused by the
different nature of the spatial and temporal subspaces. The
spatial one, unlike the temporal one, contains inherently
the “mixing” by the MIMO channel. The received signal
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is a superposition of all signals from transmitted antennas.
The temporal subspace requires this feature to be added
artificially by the precoder. (3) We show that the precoder
itself does not necessarily need to be a complex continuous
valued. The discrete valued (Hadamard) precoder also
provides optimal results. This has a significant impact on the
implementation.

1.3. Outline of the solution

The solution relies on a novel virtual multiple access (VMA)
capacity region approach. For the clarity of the further
explanation, the detailed outline follows.

� The channel model assumes M independent channels
(blocks) in the frame. No form of channel state
information is assumed on the transmitter side.

� The channel coder is decomposed into an outer and an
inner code.

� The linear precoding (inner code) with a unitary matrix
is allowed to mix the output among arbitrary blocks and
transmitter antennas in the whole frame.

� Codewords of the outer code are required to be
independent over the parallel channels (blocks).

� On the level of outer code output, the system can be
seen as a VMA system with the outer codes in the
individual channels as separate sources of information.

� The capacity region for such VMA like system is
derived.

� The symmetry conditions enforcing a uniform
achievable rate for the outer code across the parallel
channels are introduced.

� The precoder design criterion guarantees that the pair
of precoder plus outer independent code does not
perform worse than the direct coder with codeword
spanning over the whole frame.

2. SYSTEM MODEL

2.1. One-stage and two-stage channel
coding

A one-stage joint encoding (Figure 2) is defined as a
mapping d �→ q, where d is the data vector composed of
the sub-vectors for individual channels d = [dT

1 , . . . , dT
M]T

and similarly for the codeword vector q. The codeword
vectors are drawn from the codebook spanning the whole
frame.

The reference case is the one-stage block-wise encoding
(Figure 3) where the individual channel encoders do
not cooperate at all and all are having the same
codebook.

The two-stage encoder (Figure 4) is having independent
outer per-block codes sharing the same codebook cm =
Q(dm). Their codewords c = [cT

1 , . . . , cT
M]T are fed into the

input of the linear precoder.

joint coding

q1 q2 qM

d1 dMd2

1 frame = M channels (blocks)

channel Mchannel 2channel 1

Figure 2. One-stage joint optimal encoder.

c2

block M

d1 d2 dM

cMc1

1 frame = M channels (blocks)

channel 1 channel 2

Figure 3. One-stage block-wise encoder.

outer
code

outer
code

outer
code

precoder

q1 q2 qM

d1 d2 dM

c1 c2 cM

1 frame = M channels (blocks)

channel 2channel 1 channel M

Figure 4. Two-stage encoder with a linear precoder.

2.2. Channel model

All individual channels are MIMO channels with NT

transmit and NR receive antennas. The input–output
model is

ym = Gmqm + wm, m ∈ {1, . . . , M} (2)

where Gm are independent identically distributed random
NR × NT matrices with zero mean complex Gaussian
distribution and wm is the complex Gaussian additive white
noise with σ2

w variance per dimension. We define the signal-
to-noise ratio as � = E[‖cm‖2]/σ2

w.
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Figure 5. Virtual multiple access channel model.

2.3. Linear precoding and virtual channel

The second stage coding is performed in the signal space
domain by a linear operation

q = Fc (3)

The precoding power preserving unitary matrix F has
dimensions MNT × MNT . Using the channel input–output
relation and the precoder equation, we get

y = Gq + w = Hc + w (4)

where G is a block-diagonal observed channel matrix

G = diag[G1, . . . , GM] (5)

and w = [wT
1 , . . . , wT

M]T. The result can be seen as a system
with the virtual channel H from the perspective of the
codeword vector c, see Figure 5.

Since this codeword vector is composed from indepen-
dently encoded sub-vectors cm each carrying independent
fraction of the data message dm, we can describe the whole
system in a formal form of a VMA system

y =
M∑

m=1

H[m]cm + w (6)

The symbol H[m] denotes a sub-matrix composed of the
columns (NT (m − 1) + 1) to (NT m). The information flow
takes a formal form of a multiple access channel with
individual symbols cm as separate sources of information.

3. VIRTUAL CAPACITY REGION

The VMA model is now used to formulate the information
theoretic performance of the various coding models under
consideration. Information rates over individual channels

Rm must obey the capacity region inequalities∑
m∈B

Rm ≤ IB(G, F); ∀B ⊆ A (7)

where A = {1, . . . , M} is the set of all channel indices,
B is an arbitrary subset of A and IB(G, F) is the mutual
information for given subset of virtual users depending on
the channel state and precoding matrix. A particular form
of this mutual information depends on the coding model
chosen.

We require all channels to support a common equal rate
R. This will be called a symmetry condition. This is the
minimum rate required by the service application in each
of the channels in the frame.

3.1. First stage outer code only

This coding scheme assumes single stage coding with
independent codewords of the individual channels sharing
the same codebook. This is a non-optimal case suffering by
the capacity fluctuations in full. We use it as a reference.

The sum rate (over all channels in the frame) is given by∑
m∈A

Rm ≤
∑
m∈A

I(cm; y) =
∑
m∈A

I(cm; ym) (8)

The maximum mutual information, the capacity, of the mth
channel is [2,13]

Cm = log2 det
(

INR
+ �

NT

GmGH
m

)

=
NR∑
j=1

log2

(
1 + �

NT

eigj

(
GmGH

m

))
(9)

The symbol eigj(�) is the jth eigenvalue of the (�) matrix.
The maximum supported rate with the symmetry

condition employed is

R ≤ min
m∈A

Cm (10)

3.2. Optimal ideally interleaved one-stage
code

For the case of the optimal joint Gaussian one-stage
encoding, the sum rate (over all parallel channels) is
constrained by ∑

m∈A

Rm ≤ I(q; y) (11)

Considering our requirement of the symmetric rates, we get

R ≤
Cdq
M

(12)
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where the total capacity of the frame [2,13] is

Cdq = log2 det
(

IMNR
+ �

NT

�

)

=
MNR∑
j=1

log2

(
1 + �

NT

eigj(�)
)

(13)

The Hermitian matrix � is given by

� = HHH = GFFHGH (14)

3.3. Two-stage coder with common
codebook and unitary precoder

The channel appears as the VMA from the perspective of
the cm codewords. A corresponding capacity region is set
by conditions [14]

∑
m∈B

RB ≤ I(cB; y|cA\B), ∀B ⊆ A (15)

where I(cB; y|cA\B) is the conditional mutual information
between all cm with m ∈ B conditioned on the knowledge
of all cm not being part of B. Assuming capacity achieving
coding, we get

∑
m∈B

Rm ≤ CB, ∀B ⊆ A (16)

where the capacity CB is the capacity with input channel
indices from the set B and the output being the observation
y. The drop of channel excitations at indices m �∈ B is
equivalent to the perfect knowledge of the corresponding
channels at the receiver side. The capacity is thus

CB = log2 det

(
IMNR

+ �

NT

∑
m∈B

�m

)

=
|B|NR∑
j=1

log2

(
1 + �

NT

eigj

(∑
m∈B

�m

))
(17)

where �m = H[m]HH
[m] is the Hermitian matrix having only

the relevant columns corresponding to the active channels.
The maximum achievable rate under the symmetry

condition is

R ≤ min
B⊆A

1

|B|CB (18)

4. OPTIMALITY OF THE LINEAR
PRECODER

4.1. Optimality criterion

We want to design a precoder for the two-stage scenario that
would perform as well as a one-stage optimal joint encoder.
In order to achieve this, the dominant term in Equation (18)
must be equal to the capacity of one-stage optimal joint
encoding scenario

min
B⊆A

1

|B|CB =
Cdq
M

(19)

If the precoder complies with this condition, the two stage
scheme with block-wise outer encoders (sharing common
codebook) performs the same as the frame-long joint
optimal one stage coder.

The condition can be graphically interpreted in the virtual
capacity region. The straight line R1 = · · · = RM in the
code rate hyper-space represents the symmetry condition.
The line R1 + · · · + RM = Cdq represents the total rate of
one-stage joint coder. The intersection coordinates in each
dimension represent minimum symmetric rate of the joint
coder (all channels supporting the same minimal rate). If the
intersection of those two lines lies inside or on the border of
the VMA capacity region then the condition is fulfilled. If it
is outside of the VMA capacity region, at least one capacity
region condition was dominant and caused the achievable
rate to be lower.

Figure 6 shows the capacity region and the sum-rate
comparison for the one-stage code and the optimal joint
coder. Because of the block structure of the G matrix, it is
clear that

∑M

m=1 Cm = Cdq. Figure 7 shows an optimal and
a sub-optimal precoder capacity region examples.

The Mth order left-hand side condition in Equation (19),
i.e. B = A, is directly equivalent to the capacity of the joint

R1

R2

rate symmetry condition

no precoder

sum-rate point, no precoder

sum-rate point, joint precoder

joint precoder

Figure 6. Capacity region: one-stage coder with independent
codes and one-stage joint coding.
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R1

R2

rate symmetry condition

π/ 4

optimum sum-rate point

optimal and symmetrical region

sub-optimal precoder region

sub-optimal sum-rate point

Figure 7. Capacity region: two-stage optimal and sub-optimal
precoder.

one-stage coder CA = Cdq. It simply follows from

eigj

(∑
m∈B

�m

)
= eigj(�B) (20)

and corresponding capacity expressions. The matrix �B =
HBHH

B is built from the channel matrix HB containing only
columns from the set B. As a direct consequence of this, the
dominant term in Equation (18) cannot have the order of M.

The precoder optimality criterion is then

1

M
CA ≤ 1

|B|CB, ∀B ⊂ A (21)

4.2. Strong and weak optimality

We define the precoder to have strong optimality if the
precoder fulfils other criteria additionally to satisfying
Equation (21). Those criteria are defined as monotonous
behaviour of the capacity with respect to the order of the
condition

1

|B2|
|B2 |NR∑

j=1

log2

(
1 + �

NT

eigj

(∑
m∈B2

�m

))

≤ 1

|B1|
|B1|NR∑

j=1

log2

(
1 + �

NT

eigj

(∑
m∈B1

�m

))
(22)

In the case of two subsets on indices, the subset with higher
cardinality |B2| > |B1| always dominates in the criterion.

The precoder is called optimal in a weak sense if it just
fulfils the criterion (21) regardless of the cardinality of
subsets.

5. SELECTED PRECODERS

The optimality criterion (21) does not give direct hints
utilizable for a synthesis of the precoder. It can only be
used to verify whether the given precoder complies with
Equation (21). We have selected number of precoders and
evaluated their performance.

5.1. Space-time and time-only precoding

The precoder can distribute (mixture) the information
symbols along both spatial and temporal or temporal-only
domains. The first option will be called a full precoder. It
spreads the symbol in both space and time. The precoding
matrix F has non-zero elements generally in all positions.
The second option will be called Kronecker product (KP)
precoder. It spreads the symbols in time only separately
for each particular antenna. The precoding matrix can be
constructed from the baseline precoder matrix (describing
the temporal spreading) by a Kronecker product expression

F = FM ⊗ INT
(23)

5.2. Hadamard precoder

The space-time precoding is represented by an unitary
matrix having all non-zero entries. The Hadamard precoder
matrix has orthogonal columns with elements ±1 scaled to
meet the power constraint. An example Hadamard matrix
of the 4th order is

F = 1

4




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


 (24)

5.3. Complex field diversity precoder

The second option is so-called complex field diversity
(CFD) precoder. It is obtained using tools of algebraic
number theory, see References [7,15]. It has complex entries
with mutually equal magnitudes and orthogonal columns.
The CFD precoding is exhaustively treated in Reference [8].
Such design achieves the diversity gain NT NR for any finite
constellation and therefore it is viewed as the optimal one in
the diversity performance. However, in our approach, these
precoders are used in a very different channel environment
(non-ergodic) and with a strongly different motivation. The
CFD precoding matrix of the order N is generally given
as well known Fourier orthogonal space. Such precoder
consists of elements αij = (ej2π(i−1)/M)j−1 on the ith row
and jth column. Again, to preserve the total power it has to
be properly rescaled. For our purposes, the most important
feature of such complex matrices lies in having entries with
equal magnitudes.
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Figure 8. Outage probability, SISO channel, � = 0 dB.

6. NUMERICAL RESULTS

The simulation’s numerical results show that there are
some special types of precoders that support the criterion
(21) but just in a weak sense. We have not found any
precoding fulfilling the ultimate criterion in a strong
sense. The simulation results show the probability of
the outage for a given minimum desired rate per single
MIMO parallel channel. It gives us the overall quality
of a particular precoder. All simulations were carried out
using Rayleigh MIMO fading channel with uncorrelated
independent identically distributed blocks in the frame.

Figures 8–10 show the outage probability for the case of
SISO channel NT = NR = 1 and various values of signal-
to-noise ratios. There are curves for the scenarios with a no-
precoder, a joint one-stage coding and a two-stage coding
with a precoder. The CFD precoder performs the same as
the joint coding strategy and thus it achieves the optimality
for all � and M.

Figures 11–14 show the situation for MIMO 2 × 2
channel. We see that the full CFD precoder is no longer
optimal. The optimality loss decreases with the signal-
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Figure 9. Outage probability, SISO channel, � = 10 dB.
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Figure 10. Outage probability, SISO channel, � = 20 dB.
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Figure 11. Outage probability, 2 × 2 MIMO channel, � = 0 dB.
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Figure 12. Outage probability, 2 × 2 MIMO channel, � = 10 dB.

to-noise ratio. The full Hadamard precoder is performing
optimally for some values of M (2,4,8) but particularly for
M = 6 it is not optimal (however the optimality loss is
very small). The Kronecker product forms of both, CFD
and Hadamard, precoders performs optimally for all �

and M.
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Figure 13. Outage probability, 2 × 2 MIMO channel, � = 10 dB.
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Figure 14. Outage probability, 2 × 2 MIMO channel, � = 20 dB.

Now we turn our attention to the scalar stochastic
properties of the maximum common achievable rate. This
will nicely demonstrate the equalizing (or stabilizing)
effects of the precoder. The mean and the variance of the
maximum achievable rate is given in Figures 15 and 16. We
can see that all curves of the mean values for the joint (or
optimal) coding are identical. This perfectly corresponds
to the fact that the ergodic value of the maximum rate
does not depend on M. Contrary to that, the higher M
corresponds to the lower ergodic maximum achievable rate
for no precoding. That is originated by the obvious fact
that the minimum for the case with an increasing number
of fading occurrences is getting lower in an average. The
variance in Figure 16, in a coherence with our expectations,
decreases with the number of the parallel channels. The
variance for the precoded case is always substantially lower
than for the null precoder case.

We now briefly comment on the complexity issues. The
system setup with the assumption of no channel state
information at the transmitter implies that the precoder
is fixed for all transmissions and therefore there is no
complexity issue with its run-time evaluation as it is in
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Figure 15. Mean of the maximum rate, 2 × 2 MIMO channel.
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Figure 16. Variance of the maximum rate, 2 × 2 MIMO channel.

the case of adaptive transmissions. The precoder is purely
given by the channel statistics known a priori by finding
the matrix F fulfilling the criterion for a given channel. The
evaluation of the precoding matrix multiplication has the
complexity given by the number of transmit antennas NT

and the length of the frame M. The full precoder involves
multiplication by MNT × MNT matrix. In the case of the
Kronecker Product precoder the complexity is substantially
reduced to NT separate multiplications by M × M matrix.
The second case is the most relevant one since we saw that
the time domain only (KP) capacity stabilization provides
optimal results for all � and M.

Assume that the optimal joint coder has codeword length
L per-block (L must be large in order for the code to
approach the capacity). The overall code will be the space-
time NT × (ML) code. For the KP precoded case, the
coder will be space-time code NT × L with each antenna
output being multiplied by M × M matrix. The complexity
increase is thus NT M fold. The multiplications are signal-
space operations. However, in the case of the Hadamard KP
precoder these can be easily equivalently represented in the
discrete code symbols domain, e.g. by a direct modification
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of the encoder. The numerical results show that even very
small values of M provide a significant gain in comparison
with the no-precoder case. The complexity increase does
not appear to be a significant issue. We also need to keep in
the mind that the joint precoder complexity increase, when
extending the codeword length form L to ML, is likely be
higher than the linear one.

7. CONCLUSIONS

We developed two-stage coding strategy with linear unitary
inner precoding for the finite set of parallel fading channels.
The outer code provides independent codewords and the
outer coders share a common codebook. We showed that
this scheme can perform the same, in terms of the outage
probability, as the one-stage joint coding with codewords
spanning the whole frame. The advantage of our scheme
is its simpler implementation. The outer codes are having
complexity given only by the block length and the inner
code is simple linear one. On the opposite, the joint
coder would have complexity given by the whole frame
length.

The optimality criterion for the precoder is developed
based on the VMA region approach. The information-
theoretic equivalence between the well-known optimal
capacity achieving codebook with Gaussian codewords
spanning the whole frame and our approach with linear
precoder was developed. The linear combination of the
finite number of the channels with outer per-block code
is shown to be equivalent to the frame-long code under the
fulfillment of the precoder optimality criterion.

We show that the temporal-only CFD and Hadamard
precoders (the Kronecker product precoder) are optimal
for MIMO case regardless of the number of the parallel
channels or signal-to-noise ratio. The spatial-temporal
precoding (full precoder) does not generally achieve
the optimality. Temporal spreading is more important in
achieving optimal outage performance. A full space-time
precoding does not perform better than the temporal-only
one and thus we can save on the precoder complexity in this
aspect.
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