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Abstract—A constant envelope Continuous Phase Modulation
(CPM) class of Multi-Channel (MC) modulations for multi-
antenna transmitters is considered. Each receive antenna receives
a superposition of CPM waveforms. The useful signal at the
receiver spans a curved space — the Information Waveform
Manifold (IWM). Particularly it has the form of a cylinder on
a cylinder for 2-component CPM signals. At the receiver, we
use a nonlinear preprocessor consisting of a nonlinear projector
on the IWM, optional processing on the curved space, and a
decoding isomorphism. A particular form of the preprocessor,
the 2-component IWM phase discriminator, is analyzed. We
show that the discriminator can separate individual instantaneous
phases of the component CPM modulations and therefore has
multiplexing capabilities with respect to the individual trans-
mitted components. Two parallel channels are created without
the need for a time domain processing since the procedure
fully relies on the curved space properties of the IWM, and
thus can be combined with arbitrary outer space-time coding of
MC-CPM. An information theoretic analysis of the multiplexing
properties based on the mutual information regions is presented.
The discriminator solution has a two-fold ambiguity. We show
that the discriminator provides good separation of component
phases conditioned on a perfect ambiguity resolution. We propose
a transmit spatial-differential precoding scheme that allows the
ambiguity resolution.

I. INTRODUCTION

A. Motivation

The theory of linear space-time coded modulation for
Multiple-Input Multiple-Output (MIMO) channels and corre-
sponding signal processing is widely covered in the literature,
e.g. [1], [2]. Space-Time Codes (STCs) applied to nonlinear
modulations started to attract the attention of researchers only
recently and the corresponding theory covers the area only
sparsely. Some performance aspects of Multi-Channel Contin-
uous Phase Modulation (MC-CPM), like information capacity,
code design for selected channels, and decoder performance
were investigated in e.g. [3], [4], [5], [6], [7], [8].

MC-CPM modulations have a range of very useful proper-
ties and provide a very attractive alternative to linear modu-
lations. They are inherently resistant to nonlinear distortion
(caused by e.g. C-class amplifier) at the transmitter. As a
consequence of the modulation nonlinearity, the dimensionality
of the waveform per transmit antenna is higher than one. This
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opens more dimensions of the channel and also allows to
decouple a particular waveform (pulse) shape from its second
order properties. Most of those properties are particular to
the transmitter side. On the other hand, the receiver side is
believed to require more complicated processing (compared
to linear modulations) due to the higher dimensionality of the
waveform. A completely new approach for receiver processing
using specific waveform properties of MC-CPM was proposed
in [9], [10]. It builds on fact that the MC-CPM useful signal
spans a curved space (the manifold) when passed through a
MIMO channel. Particularly, it has the form of a cylinder
on a cylinder for 2-component CPM signals. This curved
space is called Information Waveform Manifold (IWM). At
the receiver, we use a nonlinear preprocessor consisting of a
nonlinear projector on the IWM, optional processing on the
curved space, and a decoding isomorphism.

The advantage of this approach is twofold. First, it reduces
the dimensionality of the processing compared to traditional
Euclidean signal space expansion. Second, the useful signal
lies on a known curved space. This opens a wide range of
nonlinear processing possibilities which are not available in
the traditional Euclidean signal space.

B. Goals of this Paper and Contributions

We present a novel multiplexing IWM based receiver signal
preprocessing which separates signals from two transmit anten-
nas based purely on the specific properties of MC-CPM IWM
without any time domain processing. The proposed scheme
can be concatenated with an arbitrary outer STC without any
mutual interaction. The preprocessing provides two virtual par-
allel channels and is done separately on each receive antenna.
The outer STC operates over that virtual MIMO channel which
(already at the level of IWM preprocessing) separates signals
received from two transmitters in the sample domain without
any need for time-domain processing. The STC can utilize the
virtual channels for ST multiplexing or for fully exploiting the
channel diversity.

The closest scenario in the literature to the considered one is
the layered multiplexing with multiple CPM in [11]. However,
the scheme in [11] uses time domain receiver processing to
separate the signals. This is achieved either by the orthogo-
nality of such signals or by successive decoding frequently in
combination with other techniques (e.g. equalizing and/or zero
forcing). The IWM preprocessor does not need that. It leaves



the time domain dimension to be used by the outer code for
its own optimization goal and does not have to be optimized
for the multiplexing itself, c.f. Sec. III.

The first goal of the paper is the information-theoretic
assessment of the multiplexing properties of the 2-component
IWM phase discriminator based on mutual information re-
gions. We derive these regions using a linearized estimation
error model and based on this we define the multiplexing sep-
aration ratio. It shows very good separation of the information
in both virtual channels. We also compare the approximate
densities used in the evaluation with the exact solution, see
Sec. V.

The second goal of the paper is the design of a practical
precoding scheme that resolves the ambiguity of the IWM
phase discriminator and that could be used to demonstrate the
basic functionality of the idea, see Sec. IV.

II. SYSTEM MODEL AND DEFINITIONS

A. Multi-Channel CPM Modulation

Multi-Channel CPM modulation is a practically important
special case of Nonlinear Multichannel Modulation possess-
ing the important property of constant envelope. The i-th
transmitter produces the complex envelope signal si(t) =
exp(jφ(t,qi)) where qi is a vector of real valued dis-
crete finite alphabet channel symbols qi,n and φ(t,qi) =∑
n qi,nβ(t−nTS) is the instantaneous phase of the signal. The

phase function β(�) is continuous and controls the trajectory
of the phase. It determines the particular type of CPM. Its
first derivative is called the frequency pulse μ(t) = ∂β(t)/∂t.
Popular choices for the frequency pulse are rectangular pulses
(CPFSK), raised cosine pulses (RC-CPM), or the convolution
of a rectangular pulse and a Gaussian pulse (GMSK). We
assume for simplicity, that the modulation index (a multiplica-
tive scaling constant of the instantaneous phase) is inherently
contained in a proper scaling of the channel symbols and phase
function.

B. MIMO Channel

The transmitted signal passes through an (NT , NR) MIMO
flat fading channel. The signal preprocessing is done separately
at each receive antenna. The separate preprocessing applies
only for nonlinear IWM preprocessing. The actual space-time
outer decoding can operate jointly on all receive antennas. For
the sake of notational clarity, the receive antenna index will be
dropped in the rest of the paper. The signal at an arbitrary re-
ceive antenna consist of useful signal a(t) which is a weighted
superposition of signals from all transmit antennas and additive
noise x(t) = a(t) + w(t). The noise w(t) is the complex
rotationally invariant white Gaussian noise passed through the
receiver front-end selectivity (not affecting the useful signal)
thus having finite variance σ2

w and zero mean. The useful signal
is a = Aejα =

∑NT

i=1 ai where hisi(t,qi) = ai = Aie
jαi ,

hi = Hie
jηi are channel coefficients, and αi = φi + ηi are

the composite instantaneous phases of the modulator and the
channel, Ai = Hi. For the rest of the treatment, the channel co-
efficients hi are assumed to be known. Assuming known hi, we

can equivalently consider the equivalent system with composite
(transmitted signal with channel) amplitudes Ai and phases αi
(see Fig. 3). All quantities are generally depending on time but
we do not denote that explicitly. In the remaining part of the
paper, we consider a system with two transmit antennas. The
resulting equivalent model for the signal at an arbitrary receive
antenna is x = Xejψ = Aejα + w = A1e

jα1 +A2e
jα2 + w.

III. 2-COMPONENT IWM PHASE DISCRIMINATOR

A. Information Waveform Manifold

The useful part a(t) of the received signal forms a curved
(nonlinear) topological space, the manifold. Since it is formed
by the information carrying signal we call it Information
Waveform Manifold (IWM). A particular form of the IWM
for the constant envelope class of modulation allows a novel
approach to signal processing compared to the traditional
Euclidean signal space decomposition based ones. See [9], [10]
for the background information on IWM preprocessing. Here,
we summarize the main points and extend the results of [9]
by an ambiguity-free region of operation.

A particular form of the 2-component (NT = 2) CPM signal
IWM is a cylinder-on-cylinder (see [9]). Every manifold can
be parametrized by its parametric space. Signal processing on
the IWM has two main advantages. First, the dimensionality
of the parametric space of the IWM for 2-component CPM
is equal to 3 (including time domain). The most obvious
parametrization is {α1, α2, t}. This dimensionality does not
depend on the particular CPM modulation type and it is
typically much lower than the dimensionality of the traditional
Euclidean signal space expansion. Second, the useful signal
lies on a known curved space which opens a wide range
of nonlinear processing possibilities that are not available in
the traditional Euclidean signal space. The concept of using
the IWM receiver preprocessing consists of three basic steps:
(1) Nonlinear projection on IWM, (2) Signal processing on
the IWM (optional), and (3) Isomorphism between IWM and
decoder metric.

1) Nonlinear projector on IWM : The nonlinear projection
operator z(t) = T [x(t)] is the actual operation that reduces
the dimensionality of the problem. It can be performed as an
operator, i.e. the mapping including the time domain, or as
function z(t) = T (x(t)). The latter, called a sampled space
projector, is generally suboptimal but much simpler. The full
space projector can be replaced by the sampled one followed
by a proper signal space processing on the IWM.

A particular form of the sample space IWM projec-
tor for two component CPM signals can be based on a
constrained Maximum Likelihood (ML) criterion [9] z =
arg maxǎ∈Ψ p(x|ǎ) where Ψ = {A1e

jα1+A2e
jα2}α1,α2 is the

useful signal IWM. The solution has the form of a parametric
limiter z = χ(X)ejψ with AM/AM conversion Z = χ(X)

χ(X) =

⎧⎪⎨
⎪⎩
A1 +A2, X > A1 +A2

|A1 −A2|, X < |A1 −A2|
X, elsewhere

. (1)



Amplitudes A1, A2 are assumed to be known. The projector
generally does not form a sufficient statistics. However, it was
shown in [9] that the information loss is almost negligible and
appears only at very low signal-to-noise ratios (SNRs).

2) Signal processing on the IWM : Signal processing on
the IWM is an optional step. This allows the incorporation
of time domain processing (not performed otherwise) into
the preprocessor. It can replace the true full (value and
time domain) IWM projection operator properly utilizing the
properties of the time-domain behavior of the signal on the
IWM. The signal processing on the IWM must use tools from
differential geometry, c.f. [12], [13], [14], [15], to perform
the signal processing operations (intrinsic, i.e. those using
differential geometry tools vs. extrinsic operations, i.e. those
performed in the embedding Euclidean space with subsequent
projection on the manifold). The IWM is a curved space. The
curvature generally stems from two sources. The first is a
nonlinearity of phase function β(t) in time. The second one
appears specifically in MIMO system where superposition of
two cylindrical IWMs of CPM curves the space (see [9]).

3) Isomorphism between IWM and decoder metric: After
the IWM processing is completed, we must provide a suitable
metric for the outer space-time decoder. This isomorphism can
have various forms depending on the particular needs of the
space-time decoder. A decoding metric composed of individ-
ual component phase estimates α̂1, α̂2 is clearly one of the
attractive choices. The isomorphism can be constructed using
a geometric approach [9] (solving the triangular problem).

B. 2-Component IWM Phase Discriminator

A particular form of IWM receiver preprocessing is the
2-Component IWM Phase Discriminator. It consists of a
nonlinear sample space projector on the IWM implemented
as a parametric limiter (1) and a decoder metric formed as
estimates of composite phases α1, α2 for the actual projected
point of the received signal z = Zejψ. The solution has
two ambiguity domains [α̂1 − ψ, α̂2 − ψ] ∈ {±[α̌1, α̌2]},
α̌1 ∈ [0, π], α̌2 ∈ [−π, 0]

α̌1 = − arccos
((
A2

1 −A2
2 + Z2

)
/ (2A1Z)

)
, (2)

α̌2 = arccos
((
A2

2 −A2
1 + Z2

)
/ (2A2Z)

)
. (3)

C. Ambiguity-Free Region and Unwrapped Solutions

One of the problems of the solutions in (2), (3) is the two-
fold ambiguity. Fig. 1 (a) shows that an ambiguity free solution
(solution 1 chosen) of the triangular problem is defined by a
condition for the true composite phases 0 ≤ Δα < π where
Δα = (α2 − α2) mod 2π and solution 2 is under condition
π ≤ Δα < 2π. This is shown on Fig. 1 (b). The solution for
the real received signal is then

α̂1 = ψ − arccos
((
A2

1 −A2
2 + Z2

)
/ (2A1Z)

)
, (4)

α̂2 = ψ + arccos
((
A2

2 −A2
1 + Z2

)
/ (2A2Z)

)
. (5)

The ambiguity free region at the level of composite phases
αi can be equivalently achieved by a correct ambiguity resolu-
tion using proper precoding at the transmitter side (restricting
the values of φi).
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Figure 1. (a) Ambiguous solution of the triangular problem. (b) Ambiguity-
free region for solution 1.

The solutions (4), (5) can be positive or negative. It is useful
to define unwrapped solutions shifted mod2π equivalently
such that the result is in the [0, 2π) range. We define the mth
(m ∈ {1, 2}) solution for the ith phase as α̂mi and similarly
the unwrapped versions. They are (U is the Unit Step function)
α̂miu = α̂mi + 2πU(−α̂mi ).

IV. SPATIAL DIFFERENTIAL PRECODER

The ambiguity resolving precoding is based on the following
idea. Given the phase shift difference of the channel propaga-
tion from both transmitter antennas Δη = (η2 − η1) mod 2π

and phase differences of the two transmitted signals Δφ =
(φ2 − φ1) mod 2π , Δα = Δφ + Δη holds. Given that we
know Δη (perfect channel state information at the receiver
is assumed) and we would limit the range of allowed Δφ (this
is in fact the definition of possible waveform phase precoder
codewords) then we can decide on the expected range of Δα
and thus we can decide which solution (1 or 2) to use for the
discriminator. One of the possible options to achiever this is
to limit the transmitted signal to

0 ≤ Δφ < π. (6)

a) Unresolvable: If both solutions Δα1,Δα2 fulfill 0 ≤
(Δαi − Δη) mod 2π < π, i ∈ {1, 2}, i.e. for both of them,
the transmitted signal condition (6) is feasible, we cannot
distinguish (resolve) which solution to pick. In the opposite
case, we can resolve the solution. The unresolvable case is
unresolvable only when taking into account one sample only
and appears only for limited range of Δαi,Δη values. We have
several options. The particular value can be erased (erasure
channel) with a similar effect as for punctured coding. This
would keep the processing only in the value domain. Besides
that, we still have the temporal domain at our disposal or any
other form of a priori information. The a priori information
(codeword structure) on the correct solution from the previous
sample in time domain can be used for this in a similar manner
as e.g. the PLL tracking loop keeps a lock on one of the stable
nodes.

b) Solution 1 : The correct one is solution 1 if 0 ≤
(Δα1 − Δη) mod 2π < π, π ≤ (Δα2 − Δη) mod 2π < 2π.

c) Solution 2 : The correct one is solution 2 if π ≤
(Δα1 − Δη) mod 2π < 2π, 0 ≤ (Δα2 − Δη) mod 2π < π.

A particular way how to fulfill transmit condition (6) is
to use a spatial differential CPM modulator φ2 = φ1 + Δφ
where φ1 is the full information carrying phase of arbitrary
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Figure 2. Phase tree of AMI precoded spatial phase difference.

CPM at the first transmit antenna. The difference between the
transmitters phases Δφ carries the second information stream.
We just have to make sure that this phase is continuous and
within limit (6). Then the second antenna signal will also be
a CPM signal. The limit (6) can be achieved by using an
AMI (Alternate Mark Inversion) precoder for the data stream
of symbols c2,n ∈ {0, 1}. The output and the state equation
of the differential precoder is qΔ,n = c2,nσ2,n, σ2,n+1 =
σ2,n(1 − 2c2,n) where σ2,n ∈ {±1} and qΔ,n ∈ {−1, 0, 1}.
The phase (see Fig. 2) Δφ = 2π

∑
n qΔ,nβ(t − nTS) will

satisfy condition (6) if the phase shaping function has one
symbol correlation length and β(t) ≤ 1/2. The initial state is
σ2,0 = 1.

V. MULTIPLEXING PROPERTIES OF THE DISCRIMINATOR

This section analyzes the multiplexing properties of the
IWM phase discriminator based on an information-theoretic
mutual information region approach. For the purpose of the
analysis in this section, we assume that the composite phases
fulfill the condition 0 ≤ Δα < π, i.e. we assume solution 1 to
be the correct one. This is equivalent to the perfect ambiguity
resolution, which is a simplifying assumption that makes the
evaluation tractable. It frees us from the necessity to use the
erasures (or any other technique) to handle the unresolvable
case (Sec. IV) at the receiver side of the processing.

A real system will suffer by the presence of the unresolvable
case (see Sec. IV) treated by the erasures with the outer code
handling those erasures. The probability of the erasures will
have a negative influence (depending on a particular CPM
type and the outer code) on the information throughput and
potentially also on the multiplexing separation. An evaluation
of this degradation is subject of the further work.

A. Multiplexing IWM Processing

In the preceding text, we defined the IWM based phase
discriminator (separator) of the composite signal phases. The
information carrying phases φi(t,qi) are separated at the
receiver (at the level of composite phases αi = φi + ηi) thus
allowing information multiplexing of the individual data qi
streams (see Fig. 3). It is very important to stress that the whole
multiplexing processing (under the perfect ambiguity resolu-
tion) of the IWM discriminator is purely done in the value
domain without any time-domain processing. Therefore it can
be easily combined with an arbitrary outer STC performed on
phases φi.

B. Mutual Information Region

The informationally equivalent system in Fig. 3 is a system
with two inputs α1, α2 (informationally equivalent inputs ob-
tained from the knowledge of channel h1, h2 and φ1, φ2) and
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Figure 3. System model of multiplexing IWM processing at one Rx antenna.

two outputs α̂1, α̂2. Let the Ri be the information rate between
{αi, α̂i} defined separately for m ∈ {1, 2} and C1, C2, C12

mutual information values defined by the mutual information
I(�; �) functions below. The bounding conditions for Ri are
given by the mutual information region (the quantities are
not the capacities since we do not optimize over the input
distribution)

R1 < C1 = I(α1; α̂1|α2), (7)

R2 < C2 = I(α2; α̂2|α1), (8)

R1 +R2 < C12 = I(α; α̂), (9)

where α = [α1, α2]T and α̂ = [α̂1, α̂2]T . This region is some-
what similar to that of the classical multiple access channel
(see [16]). It has however one subtle but important difference.
The conditional mutual information in (7) and (8) has the
output variable corresponding only to one of the outputs, which
is different from the multiple access case where both outputs
are considered. The mutual information interpretation is the
amount of information shared between a single input and a
single output given that the other one is not present or it is
known (which is equivalent — any of its influence can be
subtracted). This is obviously the most favorable situation and
rate Ri cannot exceed this value under any condition. The
sum-rate condition evaluates the total information throughput
between both inputs jointly and both outputs where encoder
and decoder can use joint processing for both channels.

The region allows to quantitatively assess the multiplexing
properties of the system, i.e. the level of separation of the
virtual channels α̂1(α1) and α̂2(α2). The situation is illustrated
on Fig. 4. Perfect multiplexing allows communication in
channel α̂1(α1) with rate R1 without any influence on rate
R2 in the second channel (and vice versa).

We define the multiplexing separation ratio as κ =
C12/(C1 + C2). Clearly, any value κ < 1 causes the region
(Fig. 4) to have the upper right corner cut-out because of
the C12 condition. This corresponds to imperfect channel
separation. Values κ > 1 indicate separation with nonzero
“safety” margin. The coefficient κ describes a quality of
channel separation, the lower κ the worse separation.

C. Approximation of the Discriminator Output

The evaluation of the quantities C1, C2, C12 in an exact
manner is difficult. The difficulty arises from two sources. The
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Figure 4. Mutual information region with (a) perfect multiplexing (separa-
tion), (b) imperfect multiplexing.

first is nonlinear projector z = χ(X)ejψ and the second one
comes from the nonlinear functions in (4), (5). Therefore, we
first try to find a tractable approximation of the discriminator
output.

Both problems can be overcome assuming medium to large
SNR. In this case the information loss caused by the nonlinear
projector is negligible [9]. We can then approximate the
solution by leaving out the projector (i.e. considering x instead
of z in (4), (5))

α̂1 ≈ ψ − arccos
((
A2

1 −A2
2 +X2

)
/ (2A1X)

)
, (10)

α̂2 ≈ ψ + arccos
((
A2

2 −A2
1 +X2

)
/ (2A2X)

)
. (11)

We are in fact not considering those noise values causing the
received signal to go outside the |A1 − A2| ≤ X ≤ A1 + A2

range. This happens rarely for sufficiently high SNR.
The second problem is solved by utilizing the rotational

invariance of the noise w. We use its tangential wt and radial
wr components. They have the same properties as the original
real and imaginary parts w = w� + jw�. See Fig. 5. Clearly
X ≈ A + wr, for wt � A. It holds that ψ = α + φ and
tan(ϕ) = wt/(A + wr). For reasonable SNR we also have
wr � A and tan(ϕ) ≈ wt/A. The angle ψ is then purely
a function of tangential component. The second part of (10),
(11) (α̌i) is on the other hand a function of wr only. Thus,

α̂1 ≈ α+ ϕ(wt) − arccos
(
A2

1 −A2
2 + (A+ wr)2

2A1(A+ wr)

)
,(12)

α̂2 ≈ α+ ϕ(wt) + arccos
(
A2

2 −A2
1 + (A+ wr)2

2A2(A+ wr)

)
.(13)

Next, the nonlinearities of (12), (13) are approximated by
first order Taylor expansion w.r.t. wr, wt. The coefficients at
the linear term are get as the first derivatives w.r.t. wr, wt. The
error of this linear approximation will be small for sufficiently
high SNR. The linear approximation ˆ̃α1, ˆ̃α2 is composed of
the noise-free components α1, α2 and the error Δαi(wr, wt)
fully capturing the influence of the noise α̂1 ≈ ˆ̃α1 = α1 +
Δα1, α̂2 ≈ ˆ̃α2 = α2 + Δα2 where the linearized estimation
error is (ˆ̃α = [ˆ̃α1, ˆ̃α1]T , α = [α1, α2]T )

Δα1 =
wt
A

+ wr
A2 −A2

1 +A2
2

2A2A1

√
1 − (A2+A2

1−A2
2)

2

4A2A2
1

, (14)

Δα2 =
wt
A

− wr
A2 +A2

1 −A2
2

2A2A2

√
1 − (A2−A2

1+A
2
2)

2

4A2A2
2

. (15)
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Figure 5. Tangential and radial noise components.

D. Approximation of the Region

The linearized model can be now used for evaluation
of C1, C2, C12. The linearized estimation error Δα =
[Δα1,Δα2]T has conditional probability density function
(PDF) pΔα|α(Δα) which is zero mean Gaussian with covari-
ance matrix

CΔα =
σ2
w

2

[ −4A2
2 2(A2 −A2

1 −A2
2)

2(A2 −A2
1 −A2

2) −4A2
1

]

A4 + (A2
1 −A2

2)2 − 2A2(A2
1 +A2

2)
.

(16)
The covariance is inherently a function of composite phases α
through the variable A(α). A marginalization of pΔα|α(Δα)
provides pΔαi|α(Δαi).

Capacities obtained from the linearized model are C̃i =
I( ˆ̃αi;αi|ᾱi) = H[ ˆ̃αi|ᾱi] − H[ ˆ̃αi|α], C̃12 = I(ˆ̃α;α) =
H[ˆ̃α] − H[ˆ̃α|α] where H[α] is the entropy of the random
variable α, i ∈ {1, 2}, and ᾱi is a complementary input
for αi (e.g. ᾱ1 = α2). The multiplexing separation ratio for
the linearized model is κ̃ = C̃12/(C̃1 + C̃2). Capacities are
evaluated with the input distribution of α with independent
components with uniform distribution over the ambiguity-free
region (Fig. 1) and a Gaussian linearized estimation error.
Details of the evaluation are not shown here because of the
space limitations.

E. Exact Solution for p(α̂|α)
All entropies needed for the mutual information region

evaluation (7), (8), (9) involve density p(α̂|α). We eval-
uate this density in an exact form in order to compare
it with its approximate form obtained by the lineariza-
tion. We show the results in a condensed form omitting
details due to the space restrictions. We start with the
joint density (see [9]) of the amplitude and phase of the
limiter output (δ(�)is Dirac delta function) p(Z,ψ|α) =
p(ψ|α, Z1)δ(Z − Z1) + p(ψ|α, Z2)δ(Z − Z2) + p(X =
Z,ψ|α) (U(Z − Z1) − U(Z − Z2)) where p(ψ|α, Z1) =∫ Z1

0
p(X,ψ|α) dX , p(ψ|α, Z2) =

∫ ∞
Z2
p(X,ψ|α) dX and

Z1 = |A1 − A2|, Z2 = A1 + A2. The density
p(X,ψ|α) is the Gaussian one transformed into polar
coordinates p(X,ψ|α) = Xpw(Xejψ − a(α)) where
pw(w) = 1/(πσ2

w) exp(−|w|2/σ2
w). The border partial den-

sities p(ψ|α, Z1), p(ψ|α, Z2) can be derived in closed form.
Next, we restrict the evaluation of the density only to

the density in the inner region of the limiter output where
Z ∈ (Z1, Z2). This density component is then pi(Z,ψ|α) =
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Figure 6. Region of linearized estimation model. (a) A1 = 1 (solid), (b)
A1 = 3 (dashed), (c) A1 = 10 (dash-dotted), A2 = 1.
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Figure 7. Separation ratio κ̃ of linearized estimation model. (a) A1 = 1
(solid), (b) A1 = 3 (dashed), (c) A1 = 10 (dash-dotted), A2 = 1.

Zpw(Zejψ − a(α)). Assuming perfect ambiguity resolution,
the value z = Zejψ is uniquely related to α̂ by Zejψ =
A1e

jα̂1 + A2e
jα̂2 . We can form the Jacobian of the trans-

formation J = J1/J2 where J1 = −A1A2 sin(α̂1 − α̂2),
J2 =

√
A2

1 +A2
2 + 2A1A2 cos(α̂1 − α̂2). The resulting inner

region PDF is pi(α̂|α) = S1Z(α̂)pw(Z(α̂)ejψ(α̂)−a(α))|J |.
The indicator function reflects our assumption of perfect
ambiguity resolution. The value S1 = S1(α̂1, α̂2) = U((α̂2 −
α̂1) mod 2π)U(π − (α̂2 − α̂1) mod 2π) is unity for solution 1.

VI. DISCUSSION OF RESULTS AND CONCLUSIONS

A numerical evaluation of the region, C̃1, C̃2, C̃12 and κ̃ is
shown in Fig 6, 7. The SNR is defined as Γ =

∑
iA

2
i /σ

2
w.

We have chosen three sets of Ai values to demonstrate
the situation of (a) equal, (b) slightly imbalanced and (c)
substantially imbalanced component signal strength. Fig. 8
shows the approximation error of the inner region PDF of
the separator output error pi(α̂ − α|α). We observe that at
higher SNR the error is higher however quite localized. On
the other side, at lower SNR the error is lower but affecting
wider region. Also the probability of the alternative ambiguity
mode becomes higher. This resolution is done by force (the
indicator function S1) which appears as a discontinuity on the
PDF error. The impact of the approximation on the separation
ratio accuracy itself of any other performance metric (e.g. bit
error rate) remains to be open and is a subject of further work.

The information-theoretic analysis of the multiplexing prop-
erties of the IWM 2-component CPM phase discriminator
showed that the processing has very good separation per-
formance. The numerical evaluation was done under the
linearized estimation error assumption which restricts this
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Figure 8. Approximation error of the inner region PDF of the separator
output error pi(α̂− α|α) as a function of α̂1 obtained by the linearization
approximation and the exact solution. Parameters σw ∈ {0.2, 0.5, 1} (solid,
dashed, dash-dotted), A1 = 1, A2 = 1, α1 = π/2, α2 = π.

statement to moderate and high SNR region. We evaluated the
approximation error of the core PDF with the one obtained by
the exact derivation. The separator processing takes samples of
the received signal and fully relies on the value domain curved
space IWM properties. It does not need any time domain
processing. Thus, it can be concatenated with arbitrary outer
STCs.
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