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Abstract

We first derive an equivalent symbol space discrete channel model for frequency flat block fading MIMO spatial diversity

channel with spatially nonuniform path delays. A general nonlinear modulation scheme is assumed by allowing channel symbols

to be multidimensional per one antenna. The sufficient symbol spaced statistic dimensionality is shown to be a product of

transmit, receive and symbol dimensions unlike for a traditional frequency flat MIMO model where the dimension is a product

of receive and symbol dimensions. The traditional model is valid only for spatially uniform delays. We show that the spatially

nonuniform path delays cause spatial Inter-Branch Interference (IBI). We introduce a reduced dimensionality equivalent system.

The spatial IBI can be reduced using Linear Minimum Mean Square Error (LMMSE) spatial-temporal preprocessing (equalizer).

Numerical results show that this dimensionality reducing preprocessing lowers significantly the residual self-noise mean square

in comparison with the case ignoring deliberately the higher dimensionality of the sufficient statistic. The spatial processing is

found to be the essential one. Additional temporal processing has only small impact on the residual self-noise.

1 Introduction

1.1 Motivation

This paper focuses on the investigation of equivalent symbol space model of MIMO (Multiple Input Multiple Output) spatial

diversity communication system with frequency flat fading. The communication system uses wireless propagation medium

which is inherently a continuous time waveform medium. However for the purpose of channel capacity investigation, code

design, etc., it is useful to work with a discrete time model (see e.g. [1], [2], [3] for some applications). This is done by

deriving equivalent discrete symbol space model based on the suitable signal expansion and the sufficient statistic principle.

This somewhat appears to be an overlooked issue in most of the papers which traditionally start with the equivalent discrete

model not paying attention to its relation to the underlying continuous time domain channel.

Traditionally the frequency flat MIMO channel model is modeled as Inter-Branch Interference (IBI) free multiplicative

distortion memoryless model. In the paper, we will show that this is possible only under a special case of Spatially Uniform
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Delay (SUD) in the propagation paths. Large number of the results on the channel capacity, coding design, etc. rely heavily

on the IBI free model of frequency flat MIMO channel. Their properties and functionality is thus directly and substantially

influenced by a correctness of this assumption. This paper aims to pointing out those possible problems and gives some

remedies to rectify the problems associated with the presence of IBI and with the higher dimensionality of the sufficient statistic

of the symbol space model.

A channel with Spatially Nonuniform Delay (SND) can easily appear in the situation when the signals from the individual

terminal antennas propagate on the distinct paths or environments (see Fig 1). This can be caused e.g. by antennas with partially

directional radiation pattern or by using different polarization in the propagation environment sensitive to the polarization. Such

a design of the antenna system can either be induced by the particular system mechanical restrictions or can be intentional since

it can help to increase the diversity of the system making the paths more independent especially in the poorly or highly correlated

scattering environment.

[Figure 1 about here.]

1.2 Contribution of the paper

The property of SUD/SND is independent with the frequency selectivity of individual propagation paths. Channels must be

classified by both criteria—SUD and per path frequency selectiveness/non-selectiveness. The latter can also be interpreted as

the path with non-uniformly/uniformly delayed rays. The SUD can thus be understood as a generalization of the frequency

non-selectiveness principle into the spatial dimension. Our paper shows that the classical IBI free MIMO channel model holds

only for the jointly SUD and frequency flat channel. We show that the sufficient statistic is inherently multidimensional in the

SND case. Any dimensionality reducing preprocessing is therefore only an approximation. To demonstrate this, we develop a

LMMSE based spatial-temporal preprocessor.

The paper also addresses the issue of multidimensional signal waveforms allowing proper treatment of nonlinear modula-

tions characterized by waveform constellation dimension greater than one.

The idea of necessity of separate channel classification in terms of SUD/SND and frequency selectiveness/non-selectiveness

and its consequences on the receiver processing is novel to the best of our knowledge. It is positioned in between general

complex frequency selective MIMO channel and classical IBI free (jointly SUD and flat fading) MIMO channel. Both these

cases are well known in the technical literature [4]. On one side, the general frequency selective MIMO model is unnecessary

complex (with too many degrees of freedom) for our case. On the other side, the one-dimensional observational model of SUD

flat fading MIMO channel violates the sufficiency principle.

The LMMSE spatial-temporal dimensionality reducing preprocessor shares common idea with a similar situation of com-

bating with multiple instances of the signal with various delays superposing at receive antennas in a single or multi user

environment. This is widely covered in literature (e.g. [5], [6]). Our paper shows that these ideas are also effective in the case

of dimensionality reducing processing for SND channel. The resulting performance is better due to having the better a priori

knowledge on the observation model which has a lower degree of freedom than the frequency selective case. Dimensionality

reduction is particularly important in turbo processing applications (see [7] for the treatment of the frequency selective channel).
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1.3 Outline of the paper

In the first part, the paper develops the channel model in the symbol space. It is the discrete time symbol period (TS) spaced

model. It is usually obtained by suitable signal expansion. The symbol space model allows, unlike the sampling approach, to

express the channel output directly in terms of the channel symbols (codewords). Moreover, we extend the results by considering

arbitrary TS-fractional delay in the signal spatial paths and also by considering generally Nq -multidimensional spatial branch

symbols. This allows us to consider also nonlinear modulation schemes unlike the most of other papers. By proper addressing

of the issue of multidimensional symbols and arbitrary delays, we will see their influence on the MIMO space-time signal

processing and overall properties of the system. The sufficient statistic proves to be NT NR Nq dimensional for a general case of

mutually unequal path delays. The equivalent model output suffers from IBI caused by mutually unequal TS-fractional delays.

In the second part of the paper, we derive a reduced dimensionality equivalent system with spatial-temporal equalizer.

It attempts to turn the sufficient statistic back to NR dimensional one in the same form as it would appear in the case of

spatially uniform delays. This reduces the dimensionality of the channel observation. Finally, the properties of the equalizer

are investigated for a random channel matrix and delays. The equalizer is a Linear Minimum Mean Square Error one built on

the assumption of perfect Channel State Information (CSI) (channel matrix and delays) assumption. The results can serve as a

performance bound for the possibilities of the linear spatial-temporal preprocessing.

2 Continuous time system model

Spatial diversity communication system is generally a communication system using a multidimensional channel where the

channel dimensionality is physically resolved in spatial dimensions. This is usually achieved by a multi-element antenna arrays

having a capability of distinguishing signals to/from various spatial angles.

We will assume a system with NT dimensional channel input and NR dimensional output. Such system will be denoted by

(NT , NR). A traditional description of a general nonlinearly modulated signal on the channel input is a NT dimensional vector

signal

s(t) =
∑

n

h′(q ′
n, t − nTS) (1)

where q ′
n are channel symbols (codewords) and h′(q ′

n, t) are modulation functions describing the expansion part of the modu-

lator. The discrete part of the modulator (the coder) is described by the output equation

q ′
n = q ′(dn, σn), q ′

n ∈
{

q ′(i)
}Mq

i=1
(2)

where dn ∈ {d(i)}Md
i=1 are data symbols and σn ∈ {σ (i)}

Mσ

i=1 are the modulator states. The modulator states are ruled by the state

equation

σn+1 = σ(dn, σn). (3)

An arbitrary modulated signal (including nonlinear modulations) can be expressed with a linear (however generally multi-
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dimensional) expansion part (for details see [8] or [9], [10]). Thus we can write

s(t) =
∑

n

QT
n h(t − nTS) (4)

where

Qn = [qn,1, . . . , qn,NT ] = Q(dn, σn) ∈
{

Q(i)
}Mq

i=1
(5)

is Nq × NT space-time channel symbol (codeword). Nq is a dimension of the channel symbol in one spatial branch. In a special

case of linear modulation, it becomes Nq = 1. Impulse h(t) is Nq dimensional modulation impulse which is assumed to be

shared by all spatial dimensions. The impulse is further assumed to be a complex Nyquist one with orthonormal components

(see [8]). Its energy time-domain correlation function is

R
E

h[m] = R
E

h(mTS) = δ[m]I. (6)

The modulated signal passes through (NT , NR) channel. The k-th element of the channel output vector x is a superposition

of contributions from all channel inputs with additive white Gaussian noise (AWGN)

xk(t) = uk(t)+wk(t)

=

NT
∑

i=1

Gki [si(t)] +wk(t). (7)

Signal uk(t) is the useful signal at k-th receiver branch. Complex noise components in individual branches are assumed to be

IID circularly symmetric Gaussian processes with correlation function Rwk (τ ) = 2N0δ(τ ). An individual contribution of the

signal from i -th input to k-th output is generally described by the operator Gki [�]. In a special case of frequency flat linear

channel this operator takes a form of

Gki [si(t)] = gkisi (t − τki ) (8)

where gki are channel transfer coefficients and τki are path delays. We also define a matrix [G]ki = gki . We consider a block-

constant fading channel which has coefficients constant during the channel observation (typically a data block). This will be

assumed to hold in the following treatment.

The MIMO channel is said to be Spatially Uniform Delay (SUD) channel if τki = τk′ i ′ , ∀k, k ′, i, i ′. In the opposite case,

it is said to be generally Spatially Nonuniform Delay (SND) channel. We also define special cases. The channel is Spatially

Transmit-Uniform Delay (STUD) if τki = τki ′ , ∀k, i, i ′ and Spatially Receive-Uniform Delay (SRUD) if τki = τk′i , ∀k, k ′, i .

3 Equivalent symbol space channel model

Up to this point, we treated the channel in the continuous time domain. However it is very useful to find its equivalent symbol

space model. The symbol space model is discrete time symbol period spaced model. Its input are directly the channel symbols

and the output is symbol spaced discrete time observation as a function of channel symbols. This model uses a suitably defined

signal expansions. If it is possible, it is beneficial to use orthonormal expansion (signal space expansion). The orthonormality
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assumption guarantees the mutual numerical equivalence of the inner product operation in both domains. The signal space

(contrary to the sampling) expansion is necessary in order to relate the equivalent model directly to the channel symbols

(codewords).

The situation on the transmitter side is easy to handle since we assumed Nyquist modulation impulses with orthonormal

components. Therefore the symbol space expansion for n-th symbol is easily recognized as sn = Qn with the expansion

basis h(t − nTS). Because of the Nyquist modulation impulse assumption, the whole signal expansion s = [. . . , sn, . . .] has

orthonormal basis A = {h(t − nTS)}n.

Contrary to the transmitter side, the situation at the receiver side is somewhat more complicated. This is because of the

channel parameters. Particularly we allowed arbitrary delays τki on individual branches. The expansion basis and the corre-

sponding signal with a simple relation to transmitted codewords (it does not have to be directly the received signal) cannot be

identified by a similar simplistic approach. We need to adopt a systematic procedure based on the information theory—namely

using the principle of sufficient statistic. For a good background see e.g. [11] or [12].

We will assume that the receiver has a perfect knowledge of the CSI, i.e. the gains gki and delays τki . A conditional

probability density function (PDF) of the received signal conditioned by the transmitted signal is

p(x|s) = ce
− 1

2N0

∑NR
k=1

∫∞
−∞

|xk−uk(s)|2 dt

= ce
− 1

2N0

∑NR
k=1

∫∞
−∞

|xk |
2−2<

[

xku∗
k (s)

]

+|uk(s)|2 dt
. (9)

The sufficient statistic is found (based on the Neyman-Fisher factorization theorem) inside the inner product evaluation

NR
∑

k=1

∫ ∞

−∞

xku∗
k dt =

=

NR
∑

k=1

∫ ∞

−∞

xk

NT
∑

i=1

g∗
ki

∑

n

qH
n,i h

∗(t − τki − nTS) dt .

(10)

Clearly, on condition of perfect CSI knowledge at receiver the sufficient statistic is

yn,k,i = Tk(x) =

∫ ∞

−∞

xkh∗(t − τki − nTS) dt,

i ∈ {1, . . . , NT }, k ∈ {1, . . . , NR}. (11)

This symbol spaced observations form the output of symbol space model.

The expansion basis for the received signal (matched filter bank) is

B = {Bn}n =
{

{h(t − τki − nTS)}k,i
}

n . (12)

Figure 2 shows a graphical representation of the sufficient statistic evaluation. The cross-correlation part of the receiver detector

5



metric is then get from the sufficient statistic

NR
∑

k=1

∫ ∞

−∞

xku∗
k dt =

NR
∑

k=1

NT
∑

i=1

g∗
ki

∑

n

qH
n,i yn,k,i . (13)

The basis B is generally nonorthogonal. It becomes orthonormal only in the case of SUD channel (i.e. τki = const).

[Figure 2 about here.]

Based on this statistic, we can equivalently investigate the symbol space channel with the input for n-th symbol

sn = Qn = [qn,1, . . . , qn,NT ] (14)

and the output yn,k,i related to the received signal xk(t) by the equation (11). It is important to stress that the perfect CSI

knowledge was necessary.

The properties analysis of the new equivalent symbol space channel output will reveal its relation to the transmitted signal

and the channel gains—which was the goal of our effort. We substitute for the received signal to get

yn,k,i =

=

∫ ∞

−∞

(

NT
∑

i ′=1

gki ′
∑

n′

qT
n′,i ′h(t − τki ′ − n′TS)+wk(t)

)

×h∗(t − τki − nTS) dt . (15)

Skipping some algebra we get the equivalent symbol space system model

yn,k,i =

NT
∑

i ′=1

gki ′
∑

n′

R
E

h
∗ (
(n′ − n)TS + τki ′ − τki

)

qn′,i ′

+zn,k,i (16)

where the impulse energy correlation matrix is R
E

h(τ ) =
∫∞
−∞

h(t + τ)hH (t) dt . The noise component can be easily verified to

be complex circularly symmetric Gaussian with (Nq × Nq) covariance matrix

Czn,k,i = σ 2
z I = 2N0I. (17)

4 Spatially non-uniform delay and inter-branch interference

In a general case of arbitrary channel that is not STUD channel, the expression for yn,k,i suffers from the inter-symbol inter-

ference from all transmitter branches—Inter-Branch Interference (IBI). It is interesting to notice that only transmit uniformity

STUD is needed to avoid IBI. The receive non-uniformity is accommodated harmlessly by proper delay estimator at individual

receiver branches. IBI is a mixture of spatial and also temporal domain interfering symbols. Amount of the interfering symbols

increases with the dimensionality of the MIMO system and therefore have bigger impact then in the case of SISO system. As

we observe, the problem is caused by existence of TS-fractional delay differences, which is something that we have to consider
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in the real system deployment. It is important to stress that the individual branch channels are frequency flat and all interference

is purely caused by the nonuniform path delays even if the perfect CSI is available at receiver. In the case of frequency selective

channel, additional interference from delayed branch signal replicas would appear. This fact is elementary and the necessity of

the equalization (unlike for a frequency flat fading) is widely recognized. Unfortunately, the consequences of IBI in frequency

flat fading case and efficient counter measures are still far from being well understood and they are widely ignored. For some

results mapping possible consequences see e.g. [13].

On the other side, in the case of at least STUD channel, i.e. τki = τki ′ , ∀k, i, i ′, we get using the properties of modulation

impulse

yn,k,i =

NT
∑

i ′=1

gki ′ qn,i ′ + zn,k,i . (18)

The sufficient statistic is now identical for all transmitters (index i ). We can simplify previous results into a simple matrix

notation (dropping now superfluous dependence on i and by stacking the vectors)

yn = GNq qn + zn (19)

where the stacked vectors are yn = [yT
n,1, . . . , yT

n,NR
]T , qn = [qT

n,1, . . . , qT
n,NT

]T , zn = [zT
n,1, . . . , zT

n,NR
]T and the stacked

channel matrix is get by the Kronecker matrix product with (Nq × Nq ) identity matrix GNq = G ⊗ INq . The system equivalent

signal space model now corresponds with the one which is traditionally used for flat fading MIMO channel with an extension

for multidimensional channel symbols per antenna. We see that this is possible only for transmit uniform delays. It is also very

useful to realize that the dimensionality of individual transmitter branches (which is greater than one for nonlinear or block

coded modulations) in fact multiplies with the spatial dimensionality to the overall dimensionality of the equivalent channel.

From the results above, we can conclude that there exists the discrete symbol space equivalent representation of general

MIMO system with multidimensional symbols per branch. Multidimensionality of the branch symbol allows the model to be

used for general nonlinear and block coded modulations. The output of this discrete system corresponds to the output signal

yk(t) and forms the sufficient statistic. Perfect CSI knowledge is required. A necessary condition for avoiding ISI and IBI is

the modulation impulse being Nyquist one with orthonormal components and spatially transmit-uniform delay.

5 Reduced dimensionality symbol space system with spatial-temporal preprocess-

ing

A high dimensionality of the sufficient statistic in the general SND channel in comparison with the SUD case is an obvious

problem. We can attack the problem either by ignoring it or by a spatial-temporal preprocessing (equalization). Both ap-

proaches reduce the symbol space system output dimensionality into the one corresponding to the SUD channel (i.e. N R Nq

per one symbol slot). The first approach, picking only one of the outputs per receive antenna and ignoring others, will suffer

the IBI self-noise in full. The second approach with dimensionality reducing (NT NR Nq to NR Nq ) spatial-temporal equalizer

can reduce the IBI while reducing the dimensionality for the subsequent processing. The reduced dimensionality symbol space

system is on Fig. 3.
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[Figure 3 about here.]

In this section, we build the Linear Minimum Mean Square Error (LMMSE) spatial-temporal non-recursive equalizer which

will attempt to minimize residual IBI in reduced dimensionality system for frequency flat fading channel with transmit nonuni-

form TS-fractional delays. The equalizer will attempt to convert this channel back into the case with the uniform delays and

therefore with no IBI. This reduces the dimensionality of the output by factor NT . The derivation will be carried out for a

special case of linear modulation, i.e. Nq = 1.

5.1 Equivalent system model for linear modulation

Now we develop a compact matrix description of the system. The general symbol space equivalent system model based on the

sufficient statistic is given by (16). For the special case of linear modulation (Nq = 1) we get

yn,k,i =

NT
∑

i ′=1

gki ′
∑

n′

RE

h
∗ (
(n′ − n)TS + τki ′ − τki

)

qn′,i ′

+zn,k,i (20)

and

var[zn,k,i ] = σ 2
z = 2N0. (21)

We will restrict the next treatment to the sliding block non-causal signal processing. This is a typical situation in packet oriented

communication systems where the signal of the whole packet is stored in the memory and the signal processing is carried out

afterwards. In our notation, it means that n, n′ ∈ [−L, L] where L is the depth of history or future available for processing

channel symbols at zero time index1 q0,i . The L value is set according to the impulse correlation RE

h(t) function in such a way

that all significantly nonzero values are included in the summation, i.e. RE

h(t) ≈ 0 for all t : |t| > LTS .

In this section, we develop a simple vector notation for the overall spatial-temporal equivalent model that later allows a

straightforward application of the LMMSE equalizer principle. The channel symbols are assumed to be stationary. Performance

evaluation of the equalizer can be thus investigated with respect to the symbols qn,i for n = 0. This will be assumed for the rest

of the paper. We denote virtual transfer coefficients

b(n,k,i)n′,i ′ = gki ′R
E

h
∗ (
(n′ − n)TS + τki ′ − τki

)

, (22)

b(n,k,i)n′ = [b(n,k,i)n′,1 , . . . , b(n,k,i)n′,NT
]T (23)

and ((2L + 1)NT × 1) stacked vector

b̃(n,k,i) =
[

b(n,k,i)T−L , . . . , b(n,k,i)TL

]T
. (24)

1We assume stationary sequence of channel symbols.
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We use similar notation for ((2L + 1)NT × 1) stacked channel symbols

q̃ =













[q−L ,1, . . . , q−L ,NT ]T

...

[qL ,1, . . . , qL ,NT ]T













. (25)

Then the channel output relevant to the channel symbols q0,i is

yn,k,i =

NT
∑

i ′=1

L
∑

n′=−L

b(n,k,i)n′,i ′ qn′,i ′ + zn,k,i

= b̃(n,k,i)T q̃ + zn,k,i , n = −Le, . . . , Le (26)

where the equalizer filter temporal processing window length is L e ≤ L. These observations ignore all that do not depend on

the q0,i symbol. The parameter Le is introduced for intentional shortening of the equalizer temporal processing length. It can

reduce the computational complexity but with the price paid by possibly increased residual self-noise.

Values yk,i and zk,i are similarly stacked into ((2Le + 1)NT × 1) vectors

ỹk =













[y−Le,k,1, . . . , y−Le,k,NT ]T

...

[yLe,k,1, . . . , yLe,k,NT ]T













, (27)

z̃k =













[z−Le,k,1, . . . , z−Le,k,NT ]T

...

[zLe,k,1, . . . , zLe,k,NT ]T













. (28)

We also construct a (NT × (2L + 1)NT ) matrix

Bn,k =













b̃(n,k,1)T

...

b̃(n,k,NT )T













(29)

and ((2Le + 1)NT × (2L + 1)NT ) stacked matrix

B̃k =













B−Le,k

...

BLe,k













. (30)

Now, we can simply express the equivalent model at k-th receiver including the temporal dependencies

ỹk = B̃k q̃ + z̃k . (31)

The next step is to combine all receiver branches into one large vector/matrix system which describes all spatial and temporal
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dependences in the equivalent system. We define ((2Le + 1)NT NR × 1) stacked vectors

ỹ =
[

ỹT
1 , . . . , ỹT

NR

]T
, (32)

z̃ =
[

z̃T
1 , . . . , z̃T

NR

]T
(33)

and large ((2Le + 1)NT NR × (2L + 1)NT ) stacked matrix

B̃ =













B̃1

...

B̃NR













. (34)

The overall spatial-temporal symbol space equivalent model in simple matrix notation is then

ỹ = B̃q̃ + z̃. (35)

A graphical demonstration of the vector and matrix stacking in the model is shown on Fig. 4.

[Figure 4 about here.]

5.2 Linear Minimum MSE equalizer

The overall spatial-temporal equivalent matrix model (35) allows very easy application of the LMMSE principle. Our goal will

be minimization of Mean Square Error (MSE) over all receiver branches between the equalizer output and the desired value.

The desired value is the equivalent channel model output that we would obtain if the channel was STUD. It has dimensionality

NR (one output per receive antenna). The desired equalizer output at time instant n = 0 is (NR × 1) vector

θ =













∑NT
i=1 g1iq0,i

...

∑NT
i=1 gNR iq0,i













. (36)

This can be easily get in the matrix form from the stacked vector q̃ by

θ = G̃q̃ (37)

where the stacked (NR × (2L + 1)NT channel matrix is (O is (NR × L NT ) zero matrix)

G̃ = [O,G,O] . (38)

The LMMSE estimate for the time instant n = 0 is sought in a linear non-recursive form

θ̂ = V̂ỹ (39)
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where V̂ is (NR × (2Le + 1)NT NR) equalizer spatial-temporal filter matrix. The estimate minimizes the MSE error

V̂ = arg min
V̌

‖θ̂ − θ‖2

= arg min
V̌

∥

∥

∥
V̌ỹ − G̃q̃

∥

∥

∥

2
. (40)

This MSE can be also interpreted as a residual Self-Noise Mean Square (SNMS) value.

The standard LMMSE solution (see e.g. [11]) is

V̂ = Rθ,ỹR−1
ỹ (41)

where the correlation matrices can be easily get as

Rθ,ỹ = E[θỹH ]

= G̃Rq̃B̃H (42)

and

Rỹ = E[ỹỹH ]

= B̃Rq̃B̃H + Rz̃. (43)

The expectation is carried out over the random variables that are finite observation ergodic2 in the observation window. Noise

correlation (NR(2Le + 1)NT × NR(2Le + 1)NT ) matrix Rz̃ has block-wise diagonal structure

Rz̃ =













Rz̃1 O O

O
. . . O

O O Rz̃NR













(44)

where diagonal matrices contain modulation impulse function correlation values

[Rz̃k ]nNT +i,n′ NT +i ′ =

= 2N0

∫ ∞

−∞

h∗(t − τki − nTS)h(t − τki ′ − n′TS) dt

= 2N0R
E

h
∗ (
(n′ − n)TS + τki ′ − τki

)

. (45)

5.3 Equivalent model of the reduced dimensionality system

The equalizer provides on its output a new equivalent reduced dimensionality system output. This system has now only N R

dimensional output per symbol period—in principle the same as if the channel delays were mutually equivalent. The equalized

2They demonstrate all their randomness within the observation window.
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equivalent system model is

θ̂ = V̂ỹ = Aq̃ + ξ (46)

where the new system (NR × (2L + 1)NT ) matrix is A = V̂B̃ and the new noise is ξ = V̂z̃ with covariance matrix

Rξ = V̂Rz̃V̂H . (47)

Generally, the noise is no longer white.

5.4 Properties of the reduced dimensionality system—equalizer performance

The equalizer performance can be assessed by the evaluation of the residual self-noise (SNMS) at the equalizer output. It is

defined as

θε = θ̂ − θ (48)

where θ is the ideal desired value of the STUD channel. The MSE (SNMS) matrix can be get (see [11])

Rθε = E[θεθ
H
ε ]

= Rθ − Rθ,ỹR−1
ỹ Rỹ,θ

= G̃Rq̃G̃H − V̂B̃RH
q̃ G̃H . (49)

The overall SNMS for LMMSE equalizer is then

mse[θ̂] = ‖θ̂ − θ‖2 = tr(Rθε ). (50)

The overall SNMS of the LMMSE on its own has however only a limited information value as a measure of the equalizer

advantage over the unequalized system. Therefore we next compare this SNMS to the SNMS that would be present if there was

no equalizer. An actual meaning of the output of an unequalized system with NR dimensional output is of course rather ad-hoc.

This is because we know that a theoretically correct is NR NT dimensional sufficient statistic. Anything else is a violation

of the sufficient statistic. However we can consider as an ad-hoc reference unequalized system the one with NR dimensional

output (the same as for mutually equal path delays). This will provide an indication what happens if we intentionally ignore the

sufficient statistic. For the unequalized system, we choose ad-hoc on each receiver only one (ignoring other) of the components

from {y0,k,i}
NT
i=1, particularly we decide for i = 1. This choice cannot affect the comparison in terms of mean long time scale

performance much since the path delays are all random over individual frames.

The unequalized output is

ψk = y0,k,1, k ∈ {1, . . . , NR}. (51)

This can be written in matrix notation as

ψ = Uỹ (52)

12



where (NR × (2Le + 1)NT NR) matrix U is all zero matrix except for the components with index corresponding to y0,k,1

[U]k,i =











1; i = (k − 1)NT (2Le + 1)+ Le NT + 1

0; elsewhere
(53)

where k ∈ {1, . . . , NR}, i ∈ {1, . . . , (2Le + 1)NT NR}. The error vector is

ζ = ψ − θ

= Uỹ − G̃q̃

= U(B̃q̃ + z̃)− G̃q̃. (54)

The MSE matrix of unequalized output is

Rζ = E[ζζH ]

= UB̃Rq̃B̃H UH + URz̃UH + G̃Rq̃G̃H

−UB̃Rq̃G̃H − G̃Rq̃B̃H UH (55)

and the overall MSE of unequalized output is

mse[ψ] = ‖ψ − θ‖2 = tr(Rζ). (56)

6 Numerical results

In this section, we present numerical results. We evaluated the above derived equalizer performance for random values of G and

τki . These values are constant within one equalizer observation frame. The overall average self-noise mean square performance

results were get by a numerical averaging over a random complex Gaussian channel matrix G and random uniformly distributed

delays τki ∼ UD(τmin, τmax). This corresponds to an average performance for large number of transmitted blocks in block

fading channel. We assumed τmin = −TS/2 and τmax = TS/2. In all cases, we assumed uncorrelated channel symbols with

unity mean square Rq̃ = I. The signal to noise ratio per one receiver is defined to be

γ =
NT E[|qn,i |

2]

N0
. (57)

The channel matrix G is assumed to have IID Rayleigh components with unity variance. The modulation impulse is assumed to

be Root Raised Cosine (RRC) with the roll-off α = 0.6. The length of modulation impulse correlation with significant influence

is L = 3.

Figures 5, 6, and 7 show the results comparing the SNMS of reduced dimensionality (NR per one symbol slot) model output

for two cases. The first is the unequalized one deliberately ignoring multidimensional sufficient statistic. The second case is

the one with linear spatial-temporal dimensionality reducing preprocessing (equalization) with various degrees of temporal pro-

cessing (parameter Le). The case of Le = 0 corresponds to spatial-only (no temporal processing). Observing the corresponding

13



results, we see that spatial processing is the essential one. The additional temporal processing (L e ≥ 1) gives only a negligible

gain in terms of residual self-noise. The statement is applicable to the average (large number of independent blocks) SNMS.

An interpretation of the influence on the performance within the given block is still an open question.

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

7 Conclusions

We derived an equivalent symbol space channel model for frequency flat spatially nonuniform delay MIMO fading channel. The

model is based on the sufficient statistic principle. The symbol space model is a discrete time symbol spaced observation directly

depending the channel symbols (codewords) at the input. Multidimensional (per antenna) channel symbols are considered.

This allows to use the results also for nonlinear modulation schemes. It is shown that the sufficient statistic must be NT NR Nq

dimensional per one symbol slot in a general case. The traditional IBI free multiplicative channel symbol spaced model with

NR dimensional output is proved to be inadequate for the spatially nonuniform delay channel.

The equivalent channel output is heavily affected by the spatial IBI in the case of spatially nonuniform TS-fractional path

delay channel. We show that for a linear modulation this highly dimensional statistic can be converted into reduced dimension-

ality observation by means of spatial-temporal equalization. The reduced dimensionality is equal to the traditionally considered

IBI free NR dimensional output symbol space model. There is derived linear minimum MSE equalizer that reduces the IBI.

However the new equivalent system model, as observed at the equalizer output, have generally correlated Gaussian noise. Av-

erage self-noise mean square performance of the equalizer for random channel matrix and path delays was investigated. The

equalizer assumed the perfect CSI knowledge (gains, delays). It provides an IBI canceling performance bound in the MSE

sense on the linear spatial-temporal preprocessing.

The results of the paper rise considerable doubts of the vitality of the widely used MIMO frequency flat memoryless IBI free

fading channel model without properly observing spatial uniformity of path delays. The TS-fractional path delays differences

destroy the original Nyquist impulse orthogonality. The presence of these TS-fractional delays is practically unavoidable in any

practical system with partially directive antennas or other spatially selective properties of individual antennas. A possible linear

spatial-temporal preprocessing can help to reduce the IBI problem while reducing the dimensionality of the observation to N R .

Numerical results show that this dimensionality reducing preprocessing lowers significantly the residual MSE in comparison

with the case ignoring deliberately the higher dimensionality of the sufficient statistic. We observed that the spatial processing

is the essential one. Additional temporal processing has only small impact on average (large number of independent blocks)

residual self-noise. The price we pay for spatial-temporal processing reducing the output dimensionality is in the lost noise

whiteness and a considerably increased processing load. The processing complexity and residual IBI self-noise easily erases

all elegance of some MIMO decoding technique (e.g. Alamouti code) originally devised for NR dimensional IBI free symbol

space channel model and therefore a care must be taken when they are applied in SND channel.
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Figure 1: An example of the (2,2) MIMO channel with spatially nonuniform delay.
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Figure 5: A comparison of average self-noise mean square for equalized and unequalized reduced dimensionality model for
NT = 2, NR = 2.
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Figure 6: A comparison of average self-noise mean square for equalized and unequalized reduced dimensionality model for
NT = 3, NR = 3.
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Figure 7: A comparison of average self-noise mean square for equalized and unequalized reduced dimensionality model for
NT = 2, NR = 4.
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