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Abstract— We assume burst Alamouti coded STC CPM (MSK)
modulation in MIMO channel as a particular example of Non-
linear Multichannel Modulation (NMM). The NMM has multi-
dimensional constellation waveforms. The major goal is to find
suboptimal receiver signal preprocessing that could substantially
reduce receiver decoding metric computation complexity with
minor degradation of the STC performance. We introduce linear
waveform subspace projector reducing the dimensionality and
thus the complexity of the receiver signal processing. We analyze
the impact of the subspace projector on the code performance in
terms of its rank, determinant (diversity and coding gain) and
bit error rate. We find an optimal subspace basis which does not
reduce the rank of the code and which affects the determinant
and bit error rate by the minimum possible amount.

I. INTRODUCTION

The research activity in the area of Space-Time Coded
(STC) modulations for Multiple-Input Multiple-Output
(MIMO) communication systems attracted a lot of attention
in recent years. A huge number of results is already available
(see e.g. [1] and the references therein). However most of the
results concentrated on linear modulation schemes (e.g. PSK,
QAM). The Nonlinear Multichannel Modulation (NMM),
due its inherent complexity, remains explored only sparsely.
Several results on coding schemes and capacity can be found
in [2], [3], [4].

A. Motivation

The NMM can be an very attractive option due the addi-
tional degree of freedom for forming the waveform shape and
other properties (e.g. constant envelope and continuous phase).
Particularly the constant envelope property of CPM modulation
is extremely useful from the technological point of view on the
transmitter side (e.g. the C-class amplifier). However, on the
receiver side, we are typically constrained by the processing
complexity (available DSP resources, etc.). The signal space
representation of the NMM signal is multidimensional (per
antenna) and can further increase an implementation complex-
ity by increasing the dimensionality of the signal processing
(e.g. the metric computation in Viterbi algorithm). An obvious
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goal is to reduce the signal dimensionality while preserving
the properties of the original modulation as far as possible.
This can reduce substantially the processing complexity at
the receiver. There are generally two possible approaches —
the linear and nonlinear projecting receiver preprocessor. This
paper follows the linear dimensionality reducing preprocessing
line. See [5] for the nonlinear preprocessing approach.

B. Goals

We assume STC CPM (MSK) modulation in MIMO chan-
nel. The code we consider is a simple burst based Alamouti
code applied on CPM [6]. The major goal is to find suboptimal
receiver signal preprocessing that could substantially reduce
receiver decoding metric computation complexity with minor
degradation of the STC performance. We develop receiver
linear preprocessing with constellation waveform subspace
projection. This reduces the dimensionality and therefore sig-
nal processing complexity of the receiver (particularly the
decoding metric computation). The projection basis is required
to be orthogonal and Nyquist in order to facilitate the receiver
metric computation (the folding condition, see Sec. IV-C).

We analyze the code performance in terms of its rank
and determinant property (diversity and coding gain) and also
actual bit error rate under realistic signal to noise ratio as a
function of the particular subspace basis and we identify the
optimal basis. We assume flat fading Rayleigh MIMO channel
and perfect channel state information at the receiver.

II. SYSTEM MODEL AND DEFINITIONS

This section briefly introduces the system model. The main
point is the multidimensional (per antenna) constellation wave-
form space description of nonlinear modulation and corre-
sponding waveform space channel model.

A. Nonlinear multichannel modulator

The NMM generates nonlinearly modulated signal at each
transmitter antenna. The complex envelope signal on i-th
transmit antenna is

si(t) =
∑

n

g(qn,i, t − nTS) (1)

where TS is the symbol period, g(qn,i, t) is generally nonlinear
modulation waveform, qn,i ∈ {q(m)}Mq

m=1 is a channel symbol



and n is its sequence number. The channel symbol depends
on the modulator input data cn,i ∈ {c(m)}Mc

m=1 and modulator
state σn,i ∈ {σ(m)}Mσ

m=1 through time-invariant generally non-
linear function qn,i = qi(cn,i, σn,i). Mq,Mc,Mσ are alphabet
(per-transmitter) sizes for channel symbol, input codeword, and
modulator state respectively.

The function qi(cn,i, σn,i) forms a discrete part of the
modulator. It can be fully described by the Finite State
Machine (FSM) model. The function g(q, t) forms an expan-
sion part (discrete input, continuous waveform output) of the
modulator. The set of all possible modulator expansion part
output waveforms is g(�, t) ∈ {g(m)(t)}Mq

m=1. The modulation
functions are assumed to be Nyquist ones. This guarantees
that the expansion part is memoryless. Modulators (discrete
and expansion parts) in individual transmitter branches are
independent and identical.

A proper choice of the discrete and expansion part of the
modulator can be used to constrain waveform and memory
behavior of the signal. The most typical waveform constraint
is the constant envelope one. As an additional tool, the
memory constraint can be imposed. The most typical one is
the continuous signal constraint. As an practically important
example, the CPM class of modulation uses both of the above
mentioned.

The decomposition approach using FSM is essentially based
on [7] with phase modulator replaced by a linear multi-D
expansion. This however directly applies only to the full-
space signal (no sub-space projection). See Sec. IV-C for the
discussion of the expansion basis properties (particularly the
Nyquist property) in the case of the sub-space projection.

B. Channel

The channel is considered to be frequency flat block-
constant fading (NT , NR) MIMO channel with AWGN (Addi-
tive White Gaussian Noise). A received signal at k-th receive
antenna is

xk(t) =
NT∑
i=1

hkisi(t) + wk(t) (2)

where hki are channel coefficients and {wk(t)}NR

k=1 are IID
zero mean rotationally invariant complex white Gaussian noise
processes with power spectrum density Sw(f) = 2N0. Chan-
nel coefficients are zero mean IID complex Gaussian random
variables with unity variance E[|hki|2] = 1. We also form a
(NR × NT ) channel matrix [H]ki = hki.

C. Multidimensional constellation waveform space model

Arbitrary nonlinear modulation can be equivalently ex-
pressed using multidimensional waveform Euclidean signal
space representation of the waveform corresponding to the n-
th symbol at one antenna

g(qn,i, t) = sT
n,ig(t). (3)

The vector sn,i = [sn,i,1, . . . , sn,i,Ns
]T is the Ns dimensional

signal space representation of the waveform (constellation

sn,icn,i FSM

Signal Space
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Fig. 1. Multidimensional constellation waveform space model of NMM.

point) and g(t) = [g1(t), . . . , gNs
(t)]T is vector of orthonor-

mal and Nyquist basis functions. The space spanned by g(t)
is called constellation (waveform) space. In a special case of
linear modulation, the dimension is Ns = 1. For nonlinear
modulation, this is however Ns > 1. The constellation points
can be get e.g. by Gram-Schmidt procedure or by information-
ally equivalent decomposition [4]. The constellation points are
selected by the output of the FSM qn,i = qi(cn,i, σn,i) (Fig. 1).

An alternative to the orthonormal and Nyquist waveform
space basis is the Laurent decomposition [8]. It also produces
linear expansion of the waveform. However, it possesses one
very important deficiency — the Laurent decomposition (in-
cluding the tilted phase variants) does not produce orthonormal
nor Nyquist basis. The orthonormality and Nyquist property is
a very important feature from the point of view of the code
design and also for the receiver signal processing (particularly
the receiver metric evaluation).

The fact that the nonlinear modulation has waveform di-
mensionality Ns > 1 has a number of positive consequences.
It opens additional dimensions that can be used for the code
design increasing both the capacity and the potential diversity
gain. See [9] and [4] for details.

D. Waveform Space channel model for NMM

The received signal at k-th receive antenna (dimensionality
Ns per antenna) in signal space notation is

xn,k =
NT∑
i=1

hkisn,i + wn,k. (4)

This can be written in a compact form using space-stacked
vectors and matrices

x̃n = H̃s̃n + w̃n (5)

where x̃n = [xT
n,1, . . . ,x

T
n,NR

]T and similarly for s̃n and w̃n.
The stacked channel matrix has a Kronecker structure H̃ =
H ⊗ INs

(⊗ is a Kronecker product), see Fig. 2. Channel
eigenmodes x̃n = Ṽ1D̃ṼH

2 s̃n + w̃n can be also shown to
have a Kronecker structure Ṽ1 = V1 ⊗ INs

, Ṽ2 = V2 ⊗ INs

D̃ = D ⊗ INs
where H = V1DVH

2 .



Fig. 2. Stacked channel matrix with Kronecker structure.
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Fig. 3. Examples of the subspace projection matrix. L = 3, NR = 2,
Ns = 2.

III. LINEAR CONSTELLATION WAVEFORM SUBSPACE

PROJECTION

A linear constellation waveform subspace projector sig-
nificantly simplifies the implementation of the receiver by
lowering the dimensionality of the problem. However it affects
the properties, namely the coding gain and diversity gain, of
the code used. The detailed analysis can be found in [10]. Here
we summarize the results.

A. Linear subspace projector

The linear subspace projector is a preprocessor operating on
the received signal x̃n. In a first approach, it can operate in the
waveform and antenna space dimensions. The projector output
is ỹn = P̃1x̃n where P̃1 is the space-only projection matrix.
The generalized variant is the projector operating jointly in
waveform-antenna-time space dimensions. It operates on the
received vectors stacked in all waveform space, antenna space
and time domain ỹ = P̃Lx̃ where (and similarly for ỹ) x̃ =
[x̃T

1 , . . . , x̃T
L]T is Ñ × 1 vector, Ñ = NsNRL. The value L

denotes the length of time observation window. The projection
matrix is [11]

P̃L = B̃(B̃HB̃)−1B̃H (6)

where B̃ = [b̃1, . . . , b̃r̃] is the Ñ × r̃ matrix of column-
wise basis vectors of the r̃-dimensional constellation waveform
subspace (r̃ < Ñ ) the signal is projected to. Examples of the
projection matrix are shown on Fig. 3.

In the waveform space and waveform-antenna space pro-
jector variants, the projection matrix can be constant for all
orthogonal subspaces. We call this case a Kronecker projection
matrix since the projection matrix can be expressed using
the Kronecker product. In the waveform space variant (and
similarly for waveform-antenna space), it is

P̃ = ILNR
⊗ P (7)

where P is the common waveform space projection Ns ×Ns

matrix with rank r < Ns.

projected constellation points

original constellation points
subspace

subspace

(a) (b)

Fig. 4. Example of the Kronecker waveform space constellation projec-
tions (3 real dimensions into 2 real dimensions) with different minimum
distance of the equivalent projected constellation points ρmin({ũ(m)

n }m),
ρmin({ũ(m)

n,(a)
}m) > ρmin({ũ(m)

n,(b)
}m).

B. Code performance criteria affected by the projection

We assume given fixed transmitted NMM with known mul-
tidimensional constellation. We also assume given and fixed
subspace dimension dictated by the receiver implementation
complexity limits. For a given chosen subspace dimension
r̃, we seek the matrix P̃ maximizing the code performance
criteria. For a Rayleigh MIMO flat channel, the performance
criterion is typically based on rank and determinant of the
inner product (Gram) matrix for codeword pairs differences
[1].

In the simplest case of Kronecker waveform only projector,
we can show that

ỹn = (INR
⊗ P)(H ⊗ INs

)s̃n + (INR
⊗ P)w̃n

= (H ⊗ INs
)(INR

⊗ P)s̃n + w̃′
n

= H̃ũn + w̃′
n (8)

where the new equivalent projected transmitted constellation
points are ũn = [uT

n,1, . . . ,u
T
n,NT

]T , un,i = Psn,i. Noise
projection w̃′

n = (INR
⊗ P)w̃n is IID Gaussian again.

Gram matrix for codeword pairs differences for original and
projected constellations are Rs = ∆SH∆S, Ru = ∆UH∆U
where codeword (with length Lc) differences are ∆S = S(a)−
S(b),

S(a) =




s1,1 · · · s1,NT

...
. . .

...
sLc,1 · · · sLc,NT


 . (9)

∆U is defined similarly. Clearly, it is ∆U = (ILc
⊗ P)∆S

and as a consequence

Ru = ∆SH(ILc
⊗ P)∆S. (10)

The Kronecker waveform space only projector can be simply
optimized by considering a new equivalent projected constel-
lation set of transmitted codewords {ũ(m)

n }m. Fig. 4 shows
two examples of the constellation projection in the Kronecker
waveform only case.

IV. SUBSPACE PROJECTOR DESIGN FOR BURST

ALAMOUTI CODED CPM

A. Burst Alamouti coded CPM

The CPM modulation posses inherently the memory which
plays an important role in guaranteeing the continuity of



its phase. This fact makes all attempts of constructing the
Space-Time Trellis Code (ST-TC) a difficult task, see [3], [2].
The major problem stands in the necessity to construct two
concatenated trellises with given code performance criteria
(coding and diversity gain). The situation for Space-Time
Block Code (ST-BC) is somewhat easier. However the block
nature of the code could easily damage the continuity of the
phase at the block end. A relatively easy solution to this
problem is possible for the burst based transmission. The short
signal burst can be coded on the full burst level using one of the
codes based on the Orthogonal Design (OD), [6]. The simplest
example of OD is Alamouti code [12].

As an example application of the subspace projection, we
will adopt the approach of [6] and apply the Alamouti code
on the signal entities being the bursts of the CPM modulated
signal. The scalar CPM modulated signal s(t) is split into
two parts (sub-bursts) sB1(t), sB2(t). See the [6] for the
discussion of the tail effects, burst length impact and the
detection/decoding algorithm. The modulated signal for two
transmit antennas is (NT = 2)

s(t) =
[

s1(t)
s2(t)

]
=

[
sB1(t) −s∗B2(t)
sB2(t) s∗B1(t)

]
. (11)

For our purposes, we assume the burst length be long enough
to allow correct evaluation of the CPM trellis on the code
performance.

B. Code performance criteria

We will investigate how sub-space projector affects the code
coding gain and diversity gain performance measured in terms
of determinant and rank criteria [1]. The full-space unmodified
signal has det(Rs), rank(Rs) and the equivalent projected
sub-space code has det(Ru), rank(Ru). The obvious goal is
to find such sub-space that the determinant and rank of Gram
matrix for codeword pairs differences becomes affected as low
as possible.

C. Waveform space of the CPM modulation

As an example application of the projector, we consider a
MSK modulation as a special, practically important case of
CPM. The MSK modulation has Ns = 2 (complex) dimen-
sional waveform space for modulation function corresponding
to one channel symbol. The non-orthogonal basis is

{ξ1(t), ξ2(t)} =
{

exp(j2πκt)/
√

TS , exp(−j2πκt)/
√

TS

}
,

(12)
t ∈ [0, TS) where TS is the symbol period and the modulation
index is κ = 1/2. We use Gram-Schmidt process to get the
orthonormal basis

ζ1(t) = ξ1(t), (13)

ζ2(t) = (ξ2(t) + 2jξ1(t)/π) /
√

1 − 4/π2. (14)

It very important to stress that such a basis is orthonormal and
Nyquist for individual modulation functions in the sequence.
It plays an important role in receiver algorithms, the Nyquist
condition guarantees that the decoder metric is a sum of

individual contributions for individual channel symbols (fold-
ing condition). Without that, the receiver processing becomes
very awkward. The well-know Laurent CPM decomposition
(including the tilted phase variant) [8] does not produce
Nyquist basis.

There is Ms = 8 distinct waveforms of the MSK with
waveform space representation (a1 = 2/π, a2 =

√
1 − 4/π2){

s(1), . . . , s(Ms)
}

={
[1, 0]T , [j, 0]T , [−1, 0]T , [−j, 0]T ,

[−ja1, a2]T , [a1, ja2]T , [ja1,−a2]T , [−a1,−ja2]T
}

. (15)

D. Waveform sub-space

The receiver waveform-only Kronecker projector has sub-
space dimension Nr = 1. The sub-space basis is defined as a
parametric composition from full-space basis b1 = [1, bejβ ]T .
Based on this, we can find the projector matrix P̃, (7) and
consequently the Gram matrices of full-space and sub-space
equivalent constellation Rs = ∆SH∆S, Ru = ∆UH∆U.

E. Sub-space numerical optimization

We have evaluated numerically the determinant and the rank
of the full-space and the sub-space equivalent constellation
Gram matrices Rs, Ru parametrized by b, β in order to find
the optimum projection. The behavior of min(det(Ru)) is
captured at Fig. 5. We clearly see, that there is an optimal value
of b, β minimizing the impact on the determinant and therefore
on the coding gain bo1 ≈ 0.6, βo1 = π. The rank remains
unaffected by the projection for any b, β, i.e. rank(Ru) =
rank(Rs) = 2. It has rank 2 as we expect for the Alamouti
code.

A computer simulation of the bit error rate performance
was performed in order to find its dependence on the projector
parameters (Fig 7). The optimal values found by this procedure
are bo2 = 1, βo2 = π.

V. DISCUSSION OF THE RESULTS AND CONCLUSIONS

The analysis and numerical results shows quite optimistic
results. We have reduced the dimensionality from Ns = 2
to Nr = 1 which substantially reduces the receiver signal
processing complexity. The rank of the codeword matrix (the
diversity gain) remains unaffected. This is an expected result,
since the Alamouti code is applied on all dimensions of the
constellation.

The determinant of the codeword matrix describes essen-
tially the free distance properties of the code. The coding gain
of the burst Alamouti STC CPM is nonzero, unlike for the
linear memoryless schemes (like PSK), due to a presence of
the inherent CPM memory. The minimum of the determinant
affects the asymptotic coding gain behaviour. The coding gain
is reduced by the projector only by a ratio ≈ 3.5/4 in the case
of the subspace basis optimal w.r.t. the determinant criterion,
i.e. bo1 ≈ 0.6, βo1 = π. The bit error rate performance
get from the simulations under practically relevant signal to
noise ratio shows slightly different optimal subspace basis
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Fig. 5. The dependence of min(det(Ru)) on b, β.
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Fig. 6. The occurrence rate (normalized histogram) of the rank and the
determinant for all data sequences in the case of optimal sub-space basis.

bo2 = 1, βo2 = π. The reason for that seems to be a change
of the distance profile of the modulated signal caused by the
projection. The occurrence rates (normalized histograms) of
the rank and the determinant for the optimal (w.r.t. the bit error
rate) sub-space basis (bo2 = 1, βo2 = π) for all data sequences
are shown on Fig. 6. It shows the change of the det(R)
profile (the occurrence rate over all data sequences) caused
by the projection. Although the min(det(R)) is affected only
negligibly, the main mass of the profile is shifted towards
the smaller values for the projected signal. This explains the
slightly different optimization results and also slightly higher
degradation of the bit error rate than the one that would had
been expected from the min(det(Ru)) (see Fig. 7).
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Fig. 7. Bit error rate for various sub-space settings in Rayleigh flat fading
(2 × 1) channel.

A proper choice of the subspace basis is found to be
very important. Other than the optimal one can reduce the
coding gain very substantially. There is also clearly visible
the error floor behaviour for non-optimal value of b. This is
likely caused by the self-noise stemming from the Alamouti
orthogonality violation caused by the projection. However this
phenomenon needs further investigation. The application of
non-optimal angle β changes the slope of the bit error rate
curve but does not seem to produce the error floor (see Fig. 7).
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