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Hierarchical Pairwise Error Probability for Hierarchical Decode
and Forward Strategy in PLNC

Jan Sykora

Abstract—Pairwise error probability (PEP) is an essential tool
allowing to design practical optimized coding schemes. It reveals
the connection between the performance and the decoding metric
that is directly related to the codeword and/or constellation prop-
erties. The application of this principle to the hierarchical PEP
used to describe the decoding performance of many-to-one mes-
sage functions (hierarchical network code maps) in physical layer
network coding (PLNC) is addressed in this letter. Unlike for the
single-user case, the hierarchical PEP reveals a complicated depen-
dence on the structure of the hierarchical codeword/constellation.
The structure is defined in terms of hierarchical distance and hier-
archical self-distance spectra. We show that the network coded
modulation (NCM) minimizing the hierarchical decoding error
probability should have zero self-distance spectrum leading to
self-folded NCM design criterion.

Index Terms—Hierarchical decode and forward, pairwise error
probability, physical layer network coding.

I. INTRODUCTION

P LNC Background: Physical Layer Network Coding
(PLNC) communication networks deliver the information

from sources to destinations through the complex network of
relays. The information flow does not route individual source
messages but their many-to-one functions, similarly to Network
Coding. But in addition to this, the signals of multiple trans-
mitting nodes are allowed to interact at the receiving relay and
the relay performs all processing directly in the constellation
space. The extraction of the many-to-one message function out
of the interacting signals can be done in multiple hierarchical
encapsulation levels, and we name it hierarchical informa-
tion. Network Coded Modulation (NCM) denotes the set of
component constellation space codebooks aware of the net-
work structure and designed for a particular relay strategy.
Relay strategies can have many forms: Compute and Forward
(CF), Denoising, Compress and Forward, Hierarchical Decode
and Forward (HDF), etc. Final destination node determines
the desired message by solving the decoding task on multiple
collected received signals carrying hierarchical messages with
independent many-to-one message functions. The overview of
selected strategies can be found in [1]–[7], and selected results
related to the error rate performance are in [8], [9].

Motivation: The error probability is an important perfor-
mance indicator and also an obvious code and receiver design
optimization goal. The exact error probability evaluation based
on the transition probabilities is too complex (apart of trivial
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uncoded cases) to be practically useful. It also gives only a
limited insight for a synthesis of the code. A pairwise error
probability can be used to upper-bound the true error rate. As a
side-effect it also connects the performance target with the met-
ric used by the demodulator and decoder. This can be used for
the code synthesis.

This letter focuses on the HDF relay strategy [5] in a single-
stage H-MAC channel.1 The relay wants to decode the H-
message. Multiple combinations of component codewords cor-
respond to one H-message. As a consequence, the hierarchical
symbol/codeword, is generally a set of multiple constellation
points or codewords U(b). It is called called H-constellation.2

The fact that H-constellation (or H-codeword) has multiple
representations of the H-message makes the pair-wise error
analysis substantially more difficult. Also the interpretation of
the results reveals some surprising facts which do not have their
equivalents in the classical single user system.

Contribution and Main Results: We will define hierarchi-
cal pairwise error probability and we will show how this can
be used in the isomorphic layered NCM design. The evalua-
tion of the hierarchical error probability on the relay implies
H-message relay decoding strategy, i.e. HDF.

(1) We derive the expression for Hierarchical Pair-wise Error
Probability (H-PEP) revealing its dependence on the
structure of the hierarchical constellation. The structure is
defined in terms of hierarchical distance and hierarchical
self-distance spectra.

(2) We show that the NCM minimizing the hierarchical
decoding error probability should have zero self-distance
spectrum and we call this case self-folded NCM. The self-
folding property provides a neat NCM design criterion.

II. SYSTEM MODEL AND DEFINITIONS

H-MAC Stage: In order to streamline the development of
this letter, we focus on a generic single H-MAC stage with a
single receiving relay (Fig. 1). It is a smallest building block
of a more complex PLNC system. The component messages
bk ∈ [1 : M] of all transmitting nodes are encoded by NCM
into ck = Ck(bk), k ∈ [1 : K ], where K is the number of the
transmitters in H-MAC. The relay wants to decode H-message
which is Hierarchical Network Code (HNC) map (many-to-
one function) b = χ(b̃) of the component messages, where the
concatenation of all component messages is b̃ = [b1, . . . , bK ].
The “tilde” denotes “concatenation” and will also be used in
the notations of codewords c̃ = [cT

1 , . . . , cT
K ]T , symbols c̃ =

1A prefix “H-” is used to denote “hierarchical” entity, i.e. the one that is gen-
erally many-to-one function of the components, or a processing (e.g. codebook,
codeword, MAC channel, etc.) related to the hierarchical entities.

2A trivial uncoded example has two component BPSK sources with symbols
{±1}. The channel combined constellation points are {−2, 0, 2}. For XOR type
of many-to-one hierarchical function, there are two H-symbols, one represented
by {0} and second one being a pair of possible points {±2}.
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Fig. 1. System model for H-MAC Stage.

[cT
1 , . . . , cT

K ]T , codebooks C̃ = [C1, . . . ,CK ]. The observation
is described by p(x|b̃) = p(x|c̃(b̃)), where x = u(c̃) + w, u(c̃)
is the channel-combined constellation symbol depending on all
component codewords c̃, and w is Gaussian noise.

Isomorphic Layered NCM: We call the set of component
codebooks {Ck}K

k=1 isomorphic layered NCM if there exists
one-to-one mapping H-code C and H-codeword HNC map c =
χc(c̃) such that c = C(b). The isomorphism implies that the
component-wise encodings can be equivalently expressed for
the relation between the desired H-message and the corre-
sponding H-codeword. Since the H-decoding can be based on
the decoding metric related to the H-codeword which is first
obtained from the component-wise channel observation model
p(x|c̃), we call that approach also layered. The examples of
isomorphic layered NCM are CF [1] or layered block linear
NCM [5].

The analysis in this letter can be generally applied on the
level of complete messages b, codewords c and vector observa-
tion x but it could also be applied in the symbol-wise manner
(cn, xn), e.g. for the uncoded case. We will use a generic
notation using b, c, x to cover both.

III. HIERARCHICAL PAIRWISE ERROR PROBABILITY

A. H-PEP for Isomorphic NCM

H-PEP Definition: Assume the H-message decoding metric
is μb(x) and that the decoder decision processing maximizes its
value, b̂ = arg maxb μb(x). H-PEP is P2H (b′|b) = Pr{μb(x) <

μb′(x)|b = χ(b̃x )} where b̃x are actually transmitted compo-
nent data and b �= b′ are some given H-messages. We will also
use a simplified notation P2H = Pr {μb < μb′ |b}.

The H-PEP is thus the probability that the H-metric for
correct H-message b is smaller than the one for some other
message b′ provided that the received signal is consistent with
b, i.e. all component transmitted data are such that b = χ(b̃x ).
The form of the metric used in H-PEP is arbitrary. It does not
even need to be the metric leading to the optimal performance.
In such a case it would simply analyze the performance under
that suboptimal metric and potentially suggest how to optimize
the code for that given (suboptimal) metric. The most common
example is the MAP metric.

H-PEP for Isomorphic NCM: The evaluation of H-PEP
related directly to the message level HNC map metric is a diffi-
cult task. It becomes much easier when the metric is related to
the code level HNC map. It directly employs the codewords into
the calculation which will provide better insight on what the
code should optimally look like. If the NCM is isomorphic then
P2H (b′|b) = P2H (c′|c) where c = C(b) and c′ = C(b′). From
now on, we will assume isomorphic NCM and thus

P2H (c′|c) = Pr {μc(x) < μc′(x)|c} . (1)

We will also assume the use of MAP decoding metric. The H-
metric is a marginalization

μc(x) = p(x |c) = 1

p(c)

∑
c̃:c

p(x |c̃)p(c̃) (2)

where we used notation (c̃ : c) = {c̃ : c = χc(c̃)}. Notice a
very important fact that the step from message H-PEP eval-
uation to codeword based one (which is trivial in a sin-
gle user case) requires a specific assumption and further
treatment.

In (1), we first focus on the conditioning by the received
signal consistent with c. There are multiple of compo-
nent codewords c̃x in the received signal consistent with c
P2H = Pr{μc(x) < μc′(x)| ⋃c̃x :c c̃x }. Events c̃x are disjoint. If
we assume that they are also equally probable Pr{c̃x : c} =
const then3

P2H = 1

Mc̃:c

∑
c̃x :c

Pr {μc(x) < μc′(x)|c̃x } (3)

where Mc̃:c is the size of sub-codebook C̃(c). C̃(c) is a subset of
C̃ where we take only the entries consistent with c. The H-PEP
is the average over all consistent source node component codes.
This is additional level of averaging over those being present in
the traditional pairwise error probability calculation.

The Most Probable Event: We can upper-bound the H-PEP
by the most probable pairwise H-constellation event

P2H ≤ P2Hm = max
c̃x :c

Pr {μc(x) < μc′(x)|c̃x } . (4)

Notice that the hierarchical codewords c, c′ are still fixed. The
overall error rate behavior can be then (similarly as in classi-
cal single user code case) upper-bounded by the overall most
probable pairwise event

P2Hmax = max
c �=c′,c̃x :c

Pr {μc(x) < μc′(x)|c̃x } . (5)

B. H-PEP for Gaussian Memoryless Channel

Gaussian Channel: In the next step, we will constrain the
treatment to a special case of Gaussian memoryless chan-
nel. The observation likelihood for all component codes is
p(x |c̃) = 1

πmσ 2m
w

exp
(−‖x − u(c̃)‖2/σ 2

w

)
where m is a com-

plete dimensionality of the signals (both per-symbol and length
of the message), σ 2

w is the variance per dimension, and u(c̃)
is noiseless constellation space point observed at the receiver.
Notice that channel model inherently contained in u(c̃) can be
arbitrary.4 H-constellation is the set of u(c̃) consistent with
c, i.e. U(c) = {u(c̃) : c = χc(c̃)} where we properly count for
multiplicities.

On top of assuming uniformly distributed c̃, Pr{c̃} = 1/Mc̃,

Mc̃ = |C̃|, we also assume uniform c, i.e. Pr{c} = const =
1/Mc where Mc = |C| is the size of H-codebook. Then the
metric is

μc = Mc

Mc̃

∑
c̃:c

p(x |c̃) = Mc

Mc̃

1

πmσ 2m
w

∑
c̃:c

e
− 1

σ2
w

‖x−u(c̃)‖2

(6)

and its normalized form μ̇c = μcπ
mσ 2m

w Mc̃/Mc is

μ̇c =
∑
c̃:c

exp
(
−‖x − u(c̃)‖2/σ 2

w

)
. (7)

3For multiple disjoint and equally probable events Bi , it holds

Pr
{

A| ⋃M
i=1 Bi

}
= 1

M
∑M

i=1 Pr{A|Bi }.
4In a special case of a linear flat fading channel, used now only as an example

and not needed for the rest of the derivation, it would be u = ∑
k hkck .
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H-distance: The H-distance for the complete message
is uHmin(c) = arg minu(c̃):χc(c̃)=c ‖x − u(c̃)‖2. We can
factorize (7)

μ̇c = e
− 1

σ2
w

‖x−uHmin(c)‖2 ∑
c̃:c

e
− 1

σ2
w

(‖x−u(c̃)‖2−‖x−uHmin(c)‖2
)

(8)

where all differences in the summation are non-negative ‖x −
u(c̃)‖2 − ‖x − uHmin(c)‖2 ≥ 0. Finally, taking the negative
scaled logarithm ρc = −σ 2

w ln μ̇c, we get the decoder metric

ρc = ‖x − uHmin(c)‖2 − σ 2
wηc (9)

where the correction term is

ηc = ln
∑
c̃:c

e
− 1

σ2
w

(‖x−u(c̃)‖2−‖x−uHmin(c)‖2
)
. (10)

Clearly, it holds 0 ≤ ηc ≤ ln(Mc̃/Mc). The correc-
tion term is zero ηc = 0 if exactly one H-constellation
point is the minimal H-distance point u(1)(c̃) = uHmin(c)
and all others (if any) are at much larger distance,
∀i �= 1, ‖x − u(i)(c̃)‖2 	 ‖x − uHmin(c)‖2. Notice that
many practical component constellations (e.g. 2 component
BPSK and XOR HNC with H-constellation {0, {−2, 2}}), do
not fit under these conditions. On the other side, if for all c̃ : c
the H-constellation point is the minimal H-distance point, then
the correction is non-zero but constant and independent of x ,
ηc = ln(Mc̃/Mc). The non-zero value of ηc on its own does not
present a problem from the H-PEP evaluation point of view.
However its dependence on x is a problem. The presence and
behavior of the correction term also nicely demonstrates that
the pure H-distance is not generally optimal decoding metric.

H-PEP: The H-PEP for a given set of messages and for
c-consistent received signal (χc(c̃x ) = c) is then

P2He = Pr{ρc(x) > ρc′(x)|c̃x }
= Pr{‖x − uHmin(c)‖2 − ‖x − uHmin(c′)‖2

− σ 2
wηc,c′ > 0|c̃x } (11)

where ηc,c′ = ηc − ηc′ . The inequality is reversed since we
used negative scaled logarithm metric. Let us now denote the
c-consistent noiseless part of the received signal for given c̃x
as u(c̃x ). It must be a member of the H-constellation set for the
c H-symbol, i.e. u(c̃x ) ∈ U(c). The condition of c-consistent
received signal is thus reflected in having x = u(c̃x ) + w and
consequently

P2He = Pr
{
‖u(c̃x ) + w − uHmin(c)‖2

−‖u(c̃x ) + w − uHmin(c′)‖2 − σ 2
wηx,c,c′ > 0

}
(12)

where the correction terms under this condition are
ηx,c,c′ = ηx,c − ηx,c′

ηx,c = ln
∑
c̃:c

e
− 1

σ2
w

(‖u(c̃x )+w−u(c̃)‖2−‖u(c̃x )+w−uHmin(c)‖2
)
, (13)

ηx,c′= ln
∑
c̃′:c′

e
− 1

σ2
w

(‖u(c̃x )+w−u(c̃′)‖2−‖u(c̃x )+w−uHmin(c′)‖2
)
. (14)

The expression of the distances difference that appears in
P2He (and with minor modification in ηx,c, ηx,c′ ) can be further
manipulated (〈�; �〉 denotes inner product)

‖u(c̃x ) + w − uHmin(c)‖2 − ‖u(c̃x ) + w − uHmin(c′)‖2

= ‖u(c̃x ) − uHmin(c)‖2 − ‖u(c̃x ) − uHmin(c′)‖2

+ 2�
[〈

u(c̃x ) − uHmin(c);w
〉]

− 2�
[〈
u(c̃x ) − uHmin(c′);w

〉]

= ‖u(c̃x ) − uHmin(c)‖2 − ‖u(c̃x ) − uHmin(c′)‖2

− 2�
[〈

uHmin(c) − uHmin(c′);w
〉]

. (15)

ξ = −2� [〈
uHmin(c) − uHmin(c′);w

〉]
is Gaussian real-valued

scalar zero-mean random variable with the variance σ 2
ξ =

2σ 2
w‖uHmin(c) − uHmin(c′)‖2. Then

P2He= Pr
{
ξ>‖u(c̃x )−uHmin(c′)‖2−‖u(c̃x )−uHmin(c)‖2+σ 2

wηc,c′
}
. (16)

A similar manipulation can be done for the correction terms

ηx,c= ln
∑

c̃:c e
− 1

σ2
w

(
‖u(c̃x )−u(c̃)‖2−‖u(c̃x )−uHmin(c)‖2−2�

[〈u(c̃)−uHmin(c);w〉])
,

(17)

ηx,c′= ln
∑

c̃′ :c′ e
− 1

σ2
w

(
‖u(c̃x )−u(c̃′)‖2−‖u(c̃x )−uHmin(c′)‖2−2�

[〈u(c̃′)−uHmin(c′);w〉])
.

(18)

C. Hierarchical Distance and Self-Distance Spectrum

The properties of the quantities determining the H-PEP
clearly depend on two types of the H-constellation/codeword
distances. The first one is the distance between the points
belonging to different H-symbols and the second one is the dis-
tance between the points belonging to the same H-symbol. For
this purpose, we define hierarchical distance and self-distance
spectrum.

Hierarchical distance (H-distance) spectrum is a set

SH (c, c′) = {‖u(c̃)−u(c̃′)‖2: c=χc(c̃) �=c′=χc(c̃′)} . (19)

We also define SH = ⋃
c,c′ SH (c, c′).

Hierarchical self-distance (H-self-distance) spectrum is a set

SH̄ (c) = {‖u(c̃(a))−u(c̃(b))‖2: c=χc(c̃(a))=χc(c̃(b))∧c̃(a) �=c̃(b)} . (20)

We also define SH̄ = ⋃
c SH̄ (c).

D. NCM Design Rules Based on H-PEP

We use (16, 17, 18) to establish qualitative design rules
for NCM that minimize H-PEP. The situation is however less
straightforward than in the classical single user code. There
are several observations we need to keep in our mind before
we start. There are multiple mutually correlated random vari-
ables in the expression and these cannot be easily factorized
into a single one as in single-user code case. All ξ, ηx,c, ηx,c′
directly depend on Gaussian noise w and are continuos valued
correlated variables. But also the hierarchical minimum dis-
tance points uHmin(c), uHmin(c′) depend on the received signal
and therefore also on w. These variables are however discrete
one. There are random and dependent on w but constrained to
be inside the H-constellation and their influence on H-PEP can
be thus controlled through the H-distance and H-self-distance
spectrum. In order to minimize H-PEP, we should consider the
following.
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(1) The distance ‖u(c̃x ) − uHmin(c′)‖2 in (16) should be
as large as possible. Notice that ‖u(c̃x ) − uHmin(c′)‖2 ∈
SH (c, c′) for arbitrary noise w realization.

(2) The self-distance ‖u(c̃x ) − uHmin(c)‖2 in (16) should be
as small as possible. Notice that ‖u(c̃x ) − uHmin(c)‖2 ∈
SH̄ (c) for arbitrary noise w realization.

(3) The variance of the ξ variable is proportional
to ‖uHmin(c) − uHmin(c′)‖2 ∈ SH (c, c′) which is
constrained by the H-distance spectrum.

(4) The correction term ηx,c,c′ should be as large as possi-
ble which in turn means maximizing ηx,c and minimizing
ηx,c′ . Behavior of ηx,c is dictated by H-self-distance spec-
trum while the behavior of ηx,c′ is jointly dictated by both
H-distance and H-self-distance spectrum.

(5) The maximum value of ηx,c is ln(Mc̃/Mc) and it is
reached when arguments of the exponentials are zero,
i.e. when all self-distances are zero SH̄ (c) = {0}. All H-
constellation/codeword points for given c are identical.
We will call this a self-folded H-constellation/codebook
or self-folded NCM. If the H-constellation/codebook is
self-folded then the arguments of the exponentials in
ηx,c′ are also all zeros and thus ηx,c′ = ln(Mc̃/Mc) and
the overall correction term is zero regardless of the
noise ηx,c,c′ = 0. Self-folded NCM also causes the self-
distance in (16) to be zero and thus

PSF
2He

= Pr
{
ξ > ‖u(c̃x ) − uHmin(c′)‖2

}
. (21)

(6) Now let us have a look at the situation when the NCM
is not self-folded. Let us assume that the spread in self-
distances is symmetric for all c. If it was not a symmetric
one then the case that would make an advantage for
P2He(c

′|c) would become a disadvantage for P2He (c|c′)
in terms of the possible compensation as discussed in
point (6b) below.

(6a) Let us also assume that some point pair c̃x , c̃ in the
H-constellation maximizes the self-distance ‖u(c̃x ) −
u(c̃)‖2 to some particular value d2

H̄
. The expression ηx,c

will not be the maximal one (as for self-folded case)
but it will be somewhat smaller. For the given pair of
points, the argument ‖u(c̃x ) − u(c̃)‖2 of the exponen-
tial in (17) increases to the value d2

H̄
. The second term

‖u(c̃x ) − uHmin(c)‖2 will highly likely (at least for high
SNR) be zero since the minimum H-distance point is the
closest to the received signal. The degradation of the first
noiseless term in (17) is thus d2

H̄
at least for that given

point pair.
(6b) This degradation can be possibly compensated by the

improvement in the term (18). In the most favorable case
for the improvement, the points u(c̃x ), u(c̃′), uHmin(c′) lie
in the line and the maximal value of ‖u(c̃x ) − u(c̃′)‖2 −
‖u(c̃x ) − uHmin(c′)‖2 is d2

H̄
. Where, by the assumption

of the symmetry, points u(c̃′), uHmin(c′) are constrained
to the distance ‖u(c̃′) − uHmin(c′)‖2 = d2

H̄
. So the noise-

less terms in the exponentials of (18) can, at the best, just
compensate the degradation of the argument of (17) but
practically it will be even worse.

(6c) The noise terms in both (17) and (18), i.e. 2� [〈u(c̃)−
uHmin(c);w

〉]
and 2� [〈

u(c̃′) − uHmin(c′);w
〉]

are given
by the self-distances only. The left-hand sides in the inner

products are different but under the assumption of sym-
metric self-distances SH̄ (c) ≈ SH̄ (c′) they will make the
noise term highly correlated and thus both will be affect-
ing the arguments of the exponentials in (17) and (18) the
same way.

(6d) The main expression (16) also contains the self-distance.
A positive value of ‖u(c̃x ) − uHmin(c)‖2 decreases the
right-hand side of the inequality and increases the H-PEP.

(6e) As we see, the nonzero spread of the self-distances cannot
improve the H-PEP and will make highly likely the things
only worse.

IV. CONCLUSIONS AND FINAL RESULTS

The analysis of the H-PEP behavior lead us to the final main
result identifying the self-folded NCM design criterion.

Conjecture: Self-folded NCM (H-constellation/codebook)
Minimizes H-PEP: Assume isomorphic NCM in Gaussian
memoryless channel, decoding MAP H-metric, and uniform
component messages and HNC map such that Pr{c̃} = 1/Mc̃,
Pr{c} = 1/Mc, Pr{c̃ : c} = Mc/Mc̃. Self-folded NCM, i.e. the
one with zero H-self-distance spectrum SH̄ = {0}, minimizes
H-PEP which is (Q is complementary Gaussian CDF)

PSF
2He

= Q

(√
‖u(c̃x ) − uHmin(c′)‖2/(2σ 2

w)

)
. (22)

It is important to note that the self-folding property is
expected to be natural, i.e. naturally performed by the chan-
nel combining the component signals into the H-constellation
also fully respecting the channel parameterization. Notice that
the modulo-lattice preprocessing (used in CF) achieves the hier-
archical self-folding but it achieves that by the force. The price
paid for this enforcement is the distortion of the noise which
becomes modulo-equivalent Gaussian.
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